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“... I made the fixed resolve to keep meditating
on the question till I should find a purely
arithmetic and perfectly rigorous foundation for
the principles of infinitesimal analysis.”
Dedekind, 1872.

“Your discovery of the contradiction caused me
the greatest surprise and, I would almost say
consternation, since it has shaken the basis on
which I intended to build arithmetic. ... It is all
the more serious since, .., not only the
foundations of my arithmetic, but also the sole
possible foundations of arithmetic, seem to
vanish.” ‘

From Frege’s letter to Russell, 1902.




Preface

This work contains a critical exposition of the views of Frege,
Dedekind, and Peano on the foundations of arithmetic. These views
have to some degree been rendered obsolete by discoveries made in
the twentieth century — particularly Russell’s paradox, Godel’s in-
completeness theorems, and Skolem’s non-standard models for
arithmetic. Despite this, however, the writings of Frege, Dedekind,
and Peano still, in my opinion, repay careful study. They are full of
most interesting observations, insights and arguments, well worthy of
consideration by anyone who today attempts the far from easy task
of giving an adequate philosophical theory of arithmetic.

There are, so I believe, advantages in presenting the views of
Frege, Dedekind and Peano together, rather than treating Frege in
isolation, as is sometimes done. Even if our aim is simply that of
understanding Frege, his views will become clearer when they are
compared and contrasted with those of some of his distinguished
contemporaries. Dedekind, like Frege, was a logicist — that is, he
believed that arithmetic could be reduced to logic. However,
Dedekind developed this thesis in a different way from Frege.
Dedekind regarded the notion of ‘set’ or ‘class’ (or, in his own ter-
minology, ‘system’) as a basic notion of logic. He is thus one of the
ancestors of axiomatic set theory, as I try to show by tracing, in detail,
Dedckind’s influence on Zermelo. Frege, on the other hand, denied
that ‘set’ was a logical notion, and based his logic on the notion of
‘concept’. Frege is thus the ancestor of higher-order logic. In contrast
to both Dedekind and Frege, Peano denied that arithmetic could be
reduced to logic. He is really the forerunner of Hilbert’s later for-
malist philosophy of mathematics.

It is well-known that Frege (and also Peano, independently,
though to a lesser degree) made a great advance in logic. I shall argue
that this advance arose from investigations into the foundations of
arithmetic. The key stimulus was the programme of presenting
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arithmetic as an axiomatic-deductive system with the underlying
logic made fully explicit. It turned out that the underlying logic of
such a system for arithmetic was richer than that contained in any
previous formal logic.

One attractive feature of the foundations of artihmetic, as an area
of study, is that most of the fundamental problems of the philosophy
of mathematics appear in this field, but the technicalities involved
are less than elsewhere. Since everyone learns arithmetic at school,
the only thing unfamiliar to the non-mathematician will probably be
the principle of mathematical, or complete, induction, and I have
devoted an appendix to explaining this. I hope therefore that any
philosophy student, who has done the usual basic course in logic, will
be able to read this work without too much difficulty, and thereby
gain some knowledge of the problems of the philosophy of
mathematics — problems which have, of course, wide implications
for philosophy as a whole.

Most of the material which follows was presented in lectures and
seminars in the Department of History and Philosophy of Science in
Chelsea College, University of London; and I greatly benefited from
the penetrating comments and criticisms [ received on those
occasions. I would particularly like to thank my colleagues Dr. M.
Machover and Dr. M. L. G. Redhead who were kind enough to read

through the whole thing, and suggested many improvements.
D. A. GILLIES
Chelsea College,
University of London,
Manresa Road, S.W. 3.
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Introduction

The aim of this work is to examine the views of Frege, Dedekind, and
Peano on the foundations of arithmetic. By way of introduction,
however, it seems wothwhile asking: ‘why did these authors get
interested in this subject? why did they feel that it would be desirable
to provide a firm foundation for arithmetic?’ After all, the arithmetic
of the natural numbers {0, 1,2, ..., n, ...} had been widely employed
by mathematicians in Western Europe since 1500. Why then was it
only in the last quarter of the 19th century that serious attempts were
made to examine the foundations of the theory of numbers?

['shall not try here to give a complete answer to these questions,
but will content myself with mentioning one factor which almost
certainly influenced Frege and Dedekind, and probably influenced
Peano as well. This factor was the so-called arithmetization of ana-
lysis, or, as it might more accurately be described, the definition of
real numbers in terms of rational numbers.

The arithmetization of analysis can be dated around 1870.
Definitions of real numbers in terms of rational numbers were
published by Méray in 1869, and by Cantor, Dedekind and Heine in
1872. Weierstrass had earlier (in the 1860’s) expounded a theory of
real numbers in his lectures at Berlin.

I shall not here attempt a thorough treatment of the
arithmetization of analysis, which is a topic in itself.! Instead I shall
try to give an informal exposition of what was involved, in order to
show how this in turn almost certajnly stimulated interest in the
foundations of arithmetic. For the purposes of this exposition, I shall
use Dedekind’s definition of real number as set out in his (1872)
Continuity and Irrational Numbers. Dedekind’s definition has sub-
sequently proved the most popular of those proposed around 1870,

! For a good short account see Kline (1972) Mathematical Thought from Ancient to
Modern Times. Ch. 41. § 3. pp. 982-987.




and Dedekind’s treatment has a particular interest for us, since we

are going on later to examine Dedekind’s views about arithmetic.
To understand the arithmetization of analysis, we must begin by

examining the various kinds of number and how they are related to

each other. Simplest of all are the natural numbers 0, 1, 2, 3,0 My

We can write:

N = the set of natural numbers = {0, 1,2, 3, ..., n, ...}

Here I take the natural numbers as beginning with 0, as Frege does.

One can, alternatively, take the natural numbers as beginning with 1,

and write:

N=(1,2,3..,n..}

This is the convention adopted by Dedekind and Peano. It really
makes virtually no difference which definition of N is used, and I will
adopt whichever is appropriate in a given context. The main body of
this work is concerned with natural numbers, and their arithmetic.
So, when ‘number’ is used without further qualification, it can be
taken as meaning ‘natural number’.

We next introduce Z = the set of integers, where
Z = Ly =0y 5iy73,52,=1,0, +1, +2, +3, ., 0, ),

We can then consider R = the set of rational numbers or fractions. A
rational number is one of the form p/q where p, g are integers, and ¢
#= 0.

This account of rational numbers is more or less a definition of
rational numbers in terms of integers. We can make this definition a
little more precise as follows. Suppose we are given the set Z of
integers, we then define a rational number r as an ordered pair {p, q)
where p, g are integers and ¢ % 0. To complete this definition, we
have first to say when two rational numbers are equal, which we do
as follows:

(p.q) = (p’»q’) if and only if pg" = p'q .

We have then to define the operations of + and X, which can be
done thus:

Py + a9 =g’ +P'999)

{4y % ) = pp's 99 o

These definitions are obviously obtained by thinking of (p, g) as p/q,
and applying the usual rules for fractions. It can be verified that =,
X, + as thus defnied have all the requisite properties.

Just as rational numbers can be defined in terms of integers, so
integers can be defined in terms of natural numbers. Indeed we can
define an integer p as an ordered pair [m, n] of natural numbers,
where we can think of [m, n] as m - n. This way of thinking of [m, n]
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can guide us in defining =, +, X for integers, just as thinking of (p,
q) as p/q guided us in defining =, +, X for rational numbers. Since
rational numbers can be defined in terms of integers, and integers in
terms of natural numbers, we may by combining the definitions,
obtain a definition of rational numbers in terms of natural numbers.

Let us now turn to the consideration of real numbers. Perhaps the
easiest way into this subject is to begin by observing that rational
numbers can be given a geometrical representation. Let us take an
arbitrary line 1, and an arbitrary point 0 on it. Take

" &
1 1 1 1
0 1 A,
another arbitrary point I to the right of 0. We regard Ol as the unit of
distance. Then with any rational number r, we correlate a point A, on
1 such that the distance 0A, = |r|, and A, is to the right of 0 if >0,
and to the left of 0 if »<<0. So to every rational number there corre-
sponds a point A, on 1. However the converse is not true. There are
points of 1 to which no rational number corresponds. This remark-
able fact was discovered by the Pythagorean school of ancient
Greece. We will next demonstrate its truth with arguments which are
probably quite similar to those originally used by the Pythagoreans.

Y’

V2

X 1 Y

Itis an easy matter to construct a triangle XYY’ where Y'XY isa right
angle, and XY = XY’ = 0I (our unit of length). Now by Pythagoras’
theorem YY”2 = XY? + XY’2 = 2... YY' = /2. Itis easy to mark
off to the right of 0 on 1 a point B such that OB = YY’ = /2. If we
can show that /2 is not a rational number, we have obtained a point
B to which no rational number corresponds in the given
representation.



Suppose then that \/2 is a rational number i.e. that \/2 = p/q
where p, g are integers and g %= 0. We shall show that this assumption
leads to a contradiction, and hence that \/2 is not rational. For if 1/2
= p/q, where g = 0, each of p, g must be either odd or even, but not
both. We can actually suppose that at least one of p, ¢ is odd, for,
suppose they are both even, thenp = 2p’, g = 2¢’,and p/g = 2p'/2q’
= p'/q’. If p’, ¢’ are again both even, we can cancel again and
continue doing so until one of the two becomes odd. But now, since
V2 = p/q, we have

p=V2q
5 pP =gt '
-.piseven. .. pis even (since the square of an odd number is odd). .".

. g% is even. .. g is even. ... Both p,q are even. But we have assumed

that at least one of p, g is odd. This is a contradiction, and the
required result follows.

In view of this result, let us introduce the set R of real numbers
geometrically. Given any point A on the line 1 (as introduced above),
we associate with it a real number o where || = the length of 0A,
and «a>0if A is to the right of 0 and a<<0if A is to the left of 0. Some
real numbers as thus defined are rational numbers, but some (e.g.
\/2) are not. Note that here we are defining real numbers in terms of
a geometrical notion viz. length. This is the geometrical approach to
the real numbers. It was adopted more or less explicitly by Euclid,
and, more or less implicitly, by Western European mathematicians
during the period c.1500 - ¢.1850 when algebra and calculus were
being developed. Dedekind begins his (1872) Continuity and
Irrational Numbers by an explicit rejection of this geometrical
approach to real numbers.

Dedekind recounts that, in the autumn of 1858, as professor in the
Polytechnic School in Ziirich, he had to lecture on the elements of the
differential calculus. He goes on, (1872) Continuity and Irrational
Numbers pp. 1-2:

“In discussing the notion of the approach of a variable magnitude to a fixed
limiting value, and especially in proving the theorem that every magnitude which
grows continually, but not beyond all limits, must certainly approach a limilin_g
value, I had recourse to geometric evidences. Even now such resort to geometric
intuition in a first presentation of the differential calculus, I regard as exceedingly
useful, from the didactic standpoint, and indeed indispensable, if one does not
wish to lose too much time. But that this form of introduction into the differential

calculus can make no claim to being scientific, no one will deny. For myself this
feeling of dissatisfaction was so overpowering that I made the fixed resolve to keep
meditating on the question till I should find a purely arithmetic and perfectly
rigorous foundation for the principles of infinitesimal analysis.”

The point to notice here is that Dedekind holds that a “recourse to
geometric evidences ... can make no claim to being scientific”, and
that this is something which “no one will deny”. In some ways this
attitude is strange, since geometry was for many hundreds of years
regarded as the most perfect of the sciences. It is certainly interesting
to ask why Dedekind had such a mistrust of geometrical consider-
ations. We will not, however, pursue this question here, but rather
examine how Dedekind sets up his “purely arithmetic and perfectly
rigorous foundation.”

Dedekind’s problem is to define the set of real numbers (R) in
terms of the set of rational numbers (R) without using any geome-
trical notion such as length or magnitude. To do this, he makes use of
the key concept of a cut in R. This is defined as follows, Dedekind
(1872) Continuity and Irrational Numbers IV pp. 12-13:

“If now any separation of the system R into two classes A;, A,, is given which
possesses only rhis characteristic property that every number a, in A, is less than
every number a, in A,, then for brevity we shall call such a separation a cur
[Schnitt] and designate it by (A, A,).”

Every rational number a produces two cuts viz.
A, = F(r=a) A, =Fr<a)
A, = Hr>a) A, =¥Hr=a)

Dedekind regards these two cuts as essentially equivalent.

It is clear that the idea of the cut is suggested by geometrical
considerations. We can think of a point A on the line 1, cutting 1 into
two pieces — one consisting of points to the left of A, and the other of
points to the right of A. A itself can be added to either piece. But
while the idea of the cut is suggested by geometry, the exact definition
of cut does not involve anything geometrical. The only notions in-
volved are those of the rational numbers and their arithmetic, and of
sets of rational numbers. Thus Dedekind, while using geometry
heuristically, has eliminated anything geometrical in his precise
treatment.

By the Pythagorean proof given earlier, \/2 is not a rational
number. So the cut

! The notation which we shall use here and subsequently is fairly standard. It is
described in Appendix I, On Notation.
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AL =Hr<Ov(r=0aA@r2<2) ))
Ay =H(r=>00a02>2))
is not produced by a rational number. Indeed Dedekind shows that
there exist infinitely many cuts not produced by rational numbers.
He goes on, (1872) Continuity and Irrational Numbers IV p.15:
“In this property that not all cuts are produced by rational numbers consists the
incompleteness or discontinuity of the domain R of all rational numbers.
Whenever, then, we have to do with a cut (A;, A,;) produced by no rational
number, we create a new, an irrational number «, which we regard as completely
defined by this cut (A;, A,); we shall say that the number « corresponds to this cut,
or that it produces this cut. From now on, therefore, to every definite cut there
corresponds a definite rational or irrational number, and we regard two numbers
as different or unequal always and only when they correspond to essentially dif-
ferent cuts.”
One point to notice here is that Dedekind does not give an explicit
set-theoretic definition of the irrational number « in terms of either
or both of the sets (A,, A,), but rather says that we should “create”
the number from the cut. Russell was later to criticize this procedure,
and suggested instead that an irrational number be identified with a
set of rational numbers. For example « could be identified with the
set A, of the cut (A, A,).

Dedekind used this idea of “creating” numbers again in connec-
tion with the natural numbers. We shall therefore consider his views
on this question, and Russell’s criticisms in more detail later on (see
below Ch. 9 pp. 60-61).

Dedekind next defines a real number as a rational or irrational
number and proceeds to define relations of order « <  and equality
a = B between real numbers in a fairly obvious way. He is then in a
position to state and prove his key theorem on continuity (Section V
Theorem IV). This result is formulated as follows, (1872) Continuity
and Irrational Numbers p. 20:

*... the domain R possesses also continuity; i.e. the following theorem is true:
IV. If the system R of all real numbers breaks up into two classes A, A, such
that every number «, of the class A, is less than every number a, of the class A,
then there exists one and only one number a by which this separation is produc-
ed.?
This is a key result since it shows that Dedekind’s cut construction
applied to real numbers does not produce anything new. In this sensc
the real numbers are complete.

It only remains for Dedekind to define the various elementary
operations on real numbers, and to lay the foundations of in-
finitesimal analysis (that is of the differential and integral calculus).
This he does in the last two sections of his monograph (VI and VII).
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The only operation which Dedekind treats in detail is addition. Let
a and 3 be real numbers defined by cuts (A,, A,) and (B, B,). Theny
= « + Pisdefined by a cut (C,, C,), where ¢, e C, if and only if there
exista, € A; and b, e B such thata, + b, = c,. We have to verify that
this definition does define a cut, that it agrees with addition for
rational numbers in the case where « and B are rational, and that it
gives the standard properties of addition. These are straightforward
matters.
Dedekind goes on to say, (1872) Continuity and Irrational
Numbers p. 22:
“Just as addition is defined, so can the other operations of the so-called elementary
arithmetic be defined, viz., the formation of differences, products, quotients,
powers, roots, logarithms, and in this way we arrive at real proofs of theorems (as,

eg., V23 = V/6), which to the best of my knowledge have never been esta-
blished before.”

Finally in section VII, Dedekind proves the theorem which he men-
tioned in the preface viz. (op. cit. pp. 24-25):

“If a magnitude x grows continually but not beyond all limits it approaches a
limiting value.”

This, and some other results which he established in Section VII,
together provide a basis for analysis (i.e. differential and integral
calculus) which is independent of any geometrical considerations.
Such then is a brief summary of Dedekind’s (1872) monograph. Let
us next examine more closely what Dedekind really had achieved in
this monograph, and what new problems his results raised.

Dedekind certainly succeeds in defining real numbers in terms of
rational numbers, and hence in terms of natural numbers (since
rational numbers are easily defined in terms of natural numbers).
Moreover he shows how analysis (differential and integral calculus)
can be developed from his definition. It thus appears that he has
reduced the whole of analysis to a consideration of natural numbers
and their arithmetic. This is the meaning of the phrase
“arithmetization of analysis”. Dedekind himself expresses this point
of view in the Preface to his (1888) work: “Was sind und was sollen die
Zahlen?™

! Literally: what are and what ought to be the numbers? Since there is no standard
English translation of the title of this work of Dedekind’s I shall refer to it by its original
title. In the same way I shall speak of Frege’s (1879) Begriffsschrift (literally: Concept
writing), and (1893) Grundgesetze der Arithmetik (literally: Fundamental Laws of
Arithmetic). Some authors do refer to these works by a title translated into English, and,
when quoting their views, I have taken the liberty of restoring the original German title
in order to avoid confusion. ‘




He writes (op. cit. p. 35):
““... every theorem of algebra and higher analysis, no matter how remote, can be
expressed as a theorem about natural numbers, — a declaration I have heard
repeatedly from the lips of Dirichlet.”

With the advantage of hindsight, we can question this conclusion.
Dedekind’s definition of real number involves not only the concept
of rational number (and hence natural number), but also the concept
of infinite set. In a Dedekind cut (A,, A,), both A; and A, are infinite
sets. Thus analysis is not reduced simply to the theory of natural
numbers, but to the theory of natural numbers together with the
theory of infinite sets. _

It is easy to see why this was overlooked at the time. The notion of
set or class must have appeared in the 1870’s as straightforward aqd
unproblematic. Indeed Dedekind, as we shall see, regards ‘set’ (or in
his terminology ‘system’) as a basic notion of logic. Only after Cantor
had developed the theory of infinite sets, and the paradox.es qf set
theory had emerged, did it become clear that set theory i1s hlgl.lly
problematic and anything but straightforward. From a modern point
of view, then, some question-marks hang over the arithmetization of
analysis. Dedekind certainly succeeded in eliminating geometrical
considerations from the foundations of analysis, but only at the
expense of introducing part of the theory of infinite sets. It could b_e
argued, moreover, that the notion of infinite set is as doubtful as, if
not more doubtful than, the geometrical notions which it replace.d.

This, however, is a later point of view. In the 1870’ it certainly
seemed that analysis had been successfully reduced to the theory of
natural numbers. The obvious next step in constructing a firm
foundation for mathematics would be to provide a satisfactory
foundation for the theory of natural numbers. Thus there is a natural
transition from the arithmetization of analysis in the 1870’s to inter-
est in the foundations of arithmetic in the 1880’s.

The link here is obvious as far as Dedekind is concerned. His first
work on the foundations of mathematics, his (1872) Continuity and
Irrational Numbers, is on the arithmetization of analysis, while his
second work in the foundations of mathematics, his (1888) Was sind
und was sollen die Zahlen? deals with the foundations of the theory of
natural numbers.

In his (1884) Foundations of Arithmetic, § 1, 1¢ — § 2, 2¢, Frege
writes:

“The concepts of function, of continuity, of limit and of infinity have been shown

tostand in need of sharper definition. Negative and irrational numbers, which had
long since been admitted into science, have had to submit to a closer scrutiny of

their credentials... Proceeding along these lines, we are bound eventually to come
to the concept of Number and to the simplest.propositions holding of positive
whole numbers, which form the foundation of the whole of arithmetic.”

Here Frege puts the situation into greater historical perspective. The
arithmetization of analysis was actually the culmination of a move-
ment, which, beginning with Cauchy early in the 19th century, strove
to introduce greater rigour into the development of mathematical
analysis. The earlier stages of this “revolution in rigour” did indeed
involve a closer consideration of the concepts of function, continuity,
and limit; and the whole movement eventually led, via the
arithmetization of analysis (or, as Frege puts it, a closer scrutiny of
the credentials of the irrational numbers), to an examination of the
concept of natural number.

When Dedekind and Frege began their investigations of the
foundations of arithmetic, it must have seemed to them that they
were completing the last stage in a final and definitive rigorization of
mathematical analysis. But the results of their investigations were
quite different from what they expected. Instead of providing a firm
and lasting foundation for analysis, their works provided an
important stimulus for the discovery of basic paradoxes in logic itself.
Thus they inadvertently helped to throw the foundations of
mathematics into a state of crisis from which they have not really
recovered — even today. So the period with which this work deals
passes from the certainty with which Dedekind speaks, (1872) Con-
tinuity and Irrational Numbers pp. 1-2 of “a purely arithmetic and
perfectly rigorous foundation for the principles of infinitesimal ana-
lysis” to the uncertainty and confusion displayed in the following
extract from Frege’s letter to Russell of 1902 pp. 127-8: “Your dis-
covery of the contradiction caused me the greatest surprise and, I
would almost say, consternation, since it has shaken the basis on
which I intended to build arithmetic. ... I must reflect further on the
matter. It is all the more serious since, with the loss of my Rule V, not
only the foundations of my arithmetic, but also the sole possible
foundations of arithmetic, seem to vanish.”

We must beware, however, of attributing an interest in the
foundations of arithmetic exclusively to developments in
mathematics itself, important though these undoubtedly were. Frege
states explicitly that an interest in certain philosophical questions
was partly responsible for his undertaking an investigation of the
foundations of arithmetic. He writes, (1884) Foundations of
Arithmetic § 3 p. 3¢




“Philosophical motives too have prompted me to enquiries of this kind. The
answers to the questions raised about the nature of arithmetical truths — are they a
priori or a posteriori? synthetic or analytic? — must lie in this same direction.”

Indeed Frege introduces his own philosophical views about number
by giving extended criticisms of the views of other philosophers. The
most important of these philosophers are Kant and Mill. We will
therefore begin in Ch. 1 by expounding Kant’s theory of
mathematics, and then give in Ch. 2 Frege’s criticisms of Kant. Ch. 3
will give an account of Mill’s theory of mathematics, and Ch. 4 will
describe Frege’s criticisms of Mill. We will then be in a position to
begin in Ch. 5 a more detailed account of Frege’s own views.
Although our concern in this work is with the foundations of
arithmetic, we will include in our discussion of Kant and Mill an
account of their views on geometry. This will, I believe, help to clarify
their over-all positions regarding mathematics.
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Chapter 1.
Kant’s Theory of Mathematics

Kant’s theory of mathematics depends on a pair of distinctions,
namely:

(i) between a priori and a posteriori knowledge, and

(i) between analytic and synthetic judgements.
The first distinction is really a traditional one. Kant explains it in
(1781) Critique of Pure Reason A2/B3, p. 43 as follows:

“In what follows, therefore, we shall understand by a priori knowledge, not
knowledge independent of this or that experience, but knowledge absolutely
independent of all experience.”

A posteriori knowledge, however, does depend on experience.

The second distinction is really due to Kant himself — though
there are traces of it in earlier authors. In (1781) Critique of Pure
Reason, A6/B10, p. 48, the distinction is made as follows:

“Either the predicate B belongs to the subject A, as something which is (covertly)
contained in this concept A; or B lies outside the concept A, although it does
indeed stand in connection with it. In the one case I entitle the judgment analytic,
in the other synthetic.”

Kant gives the following example to illustrate the distinction:
Analytic judgement: All Bodies are Extended.

Synthetic judgement: All Bodies are Heavy.

Kant believes that the concept of body contains the concept of
extension, so that to talk of an unextended body would involve a
contradiction. Thus “all bodies are extended” is analytic. On the
other hand, although all bodies are indeed heavy, it is no way con-
tradictory to conceive of a weightless body. Thus “all bodies are
heavy” is synthetic.

This example is somewhat doubtful since Boscovich had proposed
in 1759 that matter might consist of point atoms with no spatial
extension, but acting on each other at a distance. Such point atoms
appear to be conceivable, and, were they to exist, they would
presumably be bodies of a kind. Thus the judgement “all bodies are
extended” cannot, after all, be analytic. A favourite modern example
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“all bachelors are unmarried” seems better suited to illustrate Kant’s
notion of analytic judgement.

Frege makes an interesting (and subsequently often repeated)
criticism of Kant’s distinction between analytic and synthetic. He
writes (1884) Foundations of Arithmetic, § 88, p. 100e:

“On the basis of his definition, the division of judgements into analytic and
synthetic is not exhaustive. What he is thinking of is the universal affirmative
Jjudgement; there, we can speak of a subject concept and ask — as his definition
requires — whether the predicate concept is contained in it or not. But how can we
do this, if the subject is an individual object? Or if the judgement is an existential
one? In these cases there can simply be no question of a subject concept in KANT’s
sense. He seems to think of concepts as defined by giving a simple list of charac-
teristics in no special order; but of all ways of forming concepts, that is one of the
least fruitful.”

The case where the subject is an individual object e.g. Socrates is
mortal does not really pose serious difficulties, since Kant would
presumably say that such judgements are synthetic. However, the
case of existential judgements is more problematic.

The trouble is that Kant here, as everywhere else in the Critique of
Pure Reason, assumes the correctness of Aristotelian logic. In parti-
cular he assumes that all propositions are of the subject-predicate
form: S is P. It thus makes sense, at least where individual objects are

not involved, to ask whether the predicate (P) is contained in the

subject (S) or not.

However modern logic recognizes many propositions which are
not of the subject-predicate form e.g. (V x)(3 y)R(x,y), or, as Frege
says, existential propositions such as (3 x)P(x). It is not surprising that
Frege should make this criticism since he is one of the founders of
modern logic. To overcome the difficulty, Frege proposes a new
definition of analytic which corresponds closely to Kant’s original
intentions, but is adaptable to modern logic. We will consider this in
the next chapter.

One of Kant’s principal claims is that mathemtical judgements are
synthetic a priori. Kant first argues, (1783) Prolegomena, § 2, ppP-
18-19, that:

“... properly mathematical propositions are always judgements a priori, and not

empirical, because they carry with them necessity, which cannot be taken from
experience.”

He next argues that 7 + 5 = 12 is synthetic because, by analysis of
the concept of thg unification of 7 and 5, we cannot obtain the
concept 12. As he puts it (op. cit. § 2, pp. 19-20):

“The concept of twelve is in no way already thought by merely thinking this

unification of seven and five, and though I analyse my concept of such a possible
sum as long as I please, I shall never find the twelve in it. We have to go outside
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ihese concepts and with the help of the intuition which corresponds to one of them,
our five fingers for instance or (as SEGNER does in his Arithmetic) five points,
add to the concept of seven, unit by unit, the five given in intuition. Thus we really
amplify our concept by this proposition 7 + 5 = 12, and add to the first concept a
new one which was not thought in it. That is to say, arithmetical propositions are
always synthetic, of which we shall be the more clearly aware if we take rather
larger numbers. For it is then obvious that however we might turn and twist our
concept, we could never find the sum by means of mere analysis of our concepts
without seeking the aid of intuition.”
The same applies to geometrical truths e.g. a straight line is the
shortest distance between two points. ‘Straight’ is a qualitative con-
cept and so we cannot, by analysis of concepts, obtain the
quantitative fact that a straight line is the shortest distance between
two points.

Kant does not of course deny that mathematics makes use of
analytic truths e.g. (his example) the whole is greater than the part.
His claim is rather that all significant mathematical truths are
synthetic. :

Having claimed that there exists synthetic a priori knowledge,
Kant immediately raises the question of how such knowledge is
possible. This is indeed a problem. If a judgement is synthetic i.e. not
based on a mere analysis of concepts, it would appear to be ‘about
the world’, and hence only knowable on the basis of experience. How
then can we know about the world a priori? In order to explain Kant’s
answer in the case of mathematics, we must next introduce and
explain the Kantian concept of intuition.

For Kant, intuition means much the same as ‘sense-perception’ or
‘sensibility’. As he says, (1781) Critique of Pure Reason A51/B75 p.
93: :

“Our nature is so constituted that our intuition can never be other than sensible;
that is, it contains only the mode in which we are affected by objects. ... Without
sensibility no object would be given to us, ...”
However (and this is where he differs from the empiricists), Kant
holds that intuition contains not only a matter, originating from the
thing which is being intuited, but also a form supplied by the human
mind. Indeed he claims, (1781) Critique of Pure Reason, A22/B36, p-
67, that:

“... there are two pure forms of sensible intuition, serving a principles of a priori
knowledge, namely, space and time.”

Russell illustrates this theory, (1946) History of Western Philosophy,
Book 3, Ch. XX Kant, p. 734, by the analogy of a man who, because
he wears blue spectacles, sees everything blue. Similarly, according
to Kant, we all wear spatio-temporal spectacles and so see everything
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in space and time. Things-in-themselves, however, are outside space
and time.

The connection between this and mathematics is provided by the
following quotation, (1783) Prolegomena, § 7, p. 36:

“But we find that all mathematical knowledge has this peculiarity, that it must first
exhibit its concept in intuition, and do so a priori, in an intuition that is not
empirical but pure; without this means mathematics cannot make a single step.”

What Kant means here can best be seen by considering geometry. In
order to prove e.g. Pythagoras’ theorem, we must draw figures, or
visualize such figures in our mind’s eye. That is, we must, in Kant’s
terminology, exhibit the concepts (e.g. straight line, triangle, right
angle, square, etc.) in intuition. '

Similarly in arithmetic we have to proceed by counting — a process
which takes time. However, as we saw in the earlier quotation, for
arithmetic we need also spatial intuitions of such things as fingers or
points. Apart from one brief reference to algebra, (1781) Critique of
Pure Reason A734/B762 p. 590, Kant identifies mathematics with
arithmetic and Euclidean geometry. He is thus able to link
mathematics with intuitions of space and time in the above manner.

Kant’s theory of space and time as forms of intuition, and of
things-in-themselves outside space and time, seems strange and
exotic. Yet granted his basic premises, it follows almost of necessity.
Kant, like most thinkers before the discovery of non-Euclidean
geometry, regarded Euclid’s axioms as certain and necessary, and
hence as not empirical. On this view, we know in advance that every
object which we see and feel will obey these axioms. But how is such
knowledge possible? It seems that it can only be explained on the
assumption that spatial relations are supplied not by the object but
by ourselves. To use Russell’s analogy, we are certain that the world
will obey Euclid’s axioms only because we look at it through
Euclidean spectacles.

Kant himself puts this line of thought as follows (1783)
Prolegomena, § § 8 & 9, p. 38:

“But how can intuition of the object precede the object itself?

If our intuition had to be of such a nature that it represented things as they are in
themselves, no intuition a priori would ever take place and intuition would be
empirical everytime. ... There is thus only one way in which it is possible for my
intuition to precede the reality of the object and take place as knowledge a priori,
namely if it contains nothing else than the form of sensibility which in me as subject
precedes all real impressions through which I am affected by objects. That objects of
the senses can only be intuited in accordance with this form of sensibility is
something that I can know a priori.”

Perhaps the greatest blow to Kant’s theory of mathematics was the
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discovery of non-Euclidean geometries and the proof that such
geometries are consistent relative to Euclidean geometry. These
results suggested that we do not after all know a priori the true
geometry of space, but have to determine the matter a posteriori, on
the basis of experience. However, Frege does not attack Kant on
these grounds. Indeed he defends the Kantian view of geometry. His
criticisms, as we shall see in the next chapter, are directed against
Kant’s theory of arithmetic.
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i ’ el ' tion can be reduced to ordinary logical inference. e puts it in the
jny Frege § CnthlSm s of Kant introduction, (1884) Foundations of Arithmetic, p. IVe:

b “The present work will make it clear that even an inference like that from n to
b n+1, which on the face of it is peculiar to mathematics, is based on the general

Kant held that both geometry and arithmetic are synthetic a priori.
Frege agreed that geometry was synthetic a priori, but argued that
arithmetic was analytic rather than synthetic. As we have seen, Frege
regarded Kant’s definition of analytic as too narrow because it
depended on a subject-predicate logic. He therefore begins his own
treatment of the matter by giving a new definition of analytic. How-
ever he remarks in a footnote, (1884) Foundations of Arithmetic, § 3,
. 3e
P “...1do not, of course, mean to assign a new sense to these terms, but only to state
accurately what earlier writers, KANT in particular, have meant by them.”

This comment seems to me fair. Frege’s definition extends Kant’s in
a natural way which makes it appropriate to modern logic. The

definition itself runs as follows (op. cit. § 3, p. 4¢):

“The problem becomes, in fact, that of finding the proof of the proposition, and of
following it right back to the primitive truths. If, in carrying out this process, we
come only on general logical laws and on definitions, then the truth is an analytic
one, bearing in mind that we must take account also of all propositions upon which
the admissibility of any of the definitions depends. If, however, it is impossible to
give the proof without making use of truths which are not of a general logical
nature, but belong to the sphere of some special science, then the proposition is a
synthetic one.”

Frege’s main thesis is that the truths of arithmetic are analytic in this
sense, and hence a priori. This must, at first sight, have seemed
implausible since (i) arithmetic involves special entities — the natural
numbers 0, 1,2, 3, ..., n, ... — which look very different from anything
which occurs in logic, and (ii) arithmetic involves special modes of
reasoning — particularly the principle of mathematical, or complete,
induction ( P(0) A (V n)(P(n) = P(n+1) ) ) — (V n)P(n)* — which
appear to differ from ordinary logical reasoning. However, Frege
hoped to overcome these objections by (i) defining number in terms

! For those unfamiliar with this principle, an account of it is given in Appendix II. On
the Principle of Mathematical, or Complele, Induction.
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4 laws of logic,...”

Most of Frege’s book on the foundations of arithmetic is taken up
with an attempt to establish that the truths of arithmetic are analytic.
But as well as defending his own position, he attacks the Kantian
view that these truths are synthetic. Kant’s theory is based on the
view that mathematical concepts must be exhibited in intuition. Thus,
to take Kant’s own example, the equation 7 + 5 = 12 is verified as
follows. The number five must be exhibited in intuition, and then
added unit by unit to 7 to get 12. Kant’s idea seems to be that, to
check the equation, I must hold up the fingers of one hand and count
from left to right 8, 9, 10, 11, 12. Of course the use of fingers here is
inessential. A group of sticks, points or strokes on the blackboard etc.
could be used instead. What is important is not the matter of the
intuition but its form. On the other hand it is essential to Kant’s
theory that numbers be made preceptible in some way in order to
verify the equations of arithmetic. It is just this which Frege chal-
lenges.

Frege’s basic point is that Kant’s view looks plausible for small
numbers, but obviously breaks down for large ones. I shall call his
argument here: Frege’s argument from large numbers, since, as we
shall see, it can be used in other contexts. To expound it, he changes
Kant’s example of 5 + 7 = 12 to 135664 + 37863 = 173527, and

comments, (1884) Foundations of Arithmetic, § 5, p. 6¢:
“KANT thinks he can call on our intuition of fingers or points for support, thus
running the risk of making these propositions appear to be empirical, contrary to
his own expressed opnion; for whatever our intuition of 37863 fingers may be, it is
at least certainly not pure. Moreover, the term “intuition” seems hardly appro-
priate, since even 10 fingers can, in different arrangements, give rise to very
different intuitions. And have we, in fact, an intuition of 135664 fingers or points at
all? If we had, and if we had another of 37863 fingers and a third of 173527 fingers,
then the correctness of our formula, if it were unprovable, would have to be
evident right away, at least as applying to fingers; but it is not.”

Frege comes back to the same point later in the book (op. cit. § 89, p.

101¢):
“I must also protest against the generality of KANT’s dictum: without sensibility
no object would be given to us. Nought and one are objects which cannot be given
to us in sensation. And even those who hold that the smaller numbers are intuit-
able, must at least concede that they cannot be given in intuition any of the

numbers greater than 1000190 abour which nevertheless we have plenty of
information.”
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Frege’s argument here seems to me quite correct, and of considerable
importance. It is quite plausible to argue that arithmetical equations
involving small numbers are based on “intuition” or “sense-percep-
tion” together with simple counting operations. But such an account
breaks down for large numbers such as 173527. To handle such
numbers we need to grasp a theoretical scheme (the decimal, or some
similar, notation, together with the various rules for adding, sub-
tracting etc. in that notation). Moreover this scheme goes beyond
what is immediately and directly perceptible. We shall have occasion
to examine further the implications of this in what follows.

It is interesting to note that in the passage from the Prolegomena
quoted above in which Kant discusses his example 7 + 5 = 12, he
writes, (1783) Prolegomena, § 2, p. 19:

“That s tosay, arithmetical propositions are always synthetic, of which we shall be
the more clearly aware if we take rather larger numbers.”
Perhaps Frege followed Kant’s suggestion, considered rather larger
numbers, and was thus led to an argument against Kant’s theory.

Although Frege attacks Kant on arithmetic, he defends him on
geometry. Indeed he says, (1884) Foundations of Arithmetic, § 89,
pp- 101¢-102e:

“I have no wish 1o incur the reproach of picking petty quarrels with a genius to
whom we must all look up with grateful awe; I feel bound, therefore, to call
attention also to the extent of my agreement with him, which far exceeds any
disagreement. To touch only upon what is immediately relevant, I consider KANT
did great service in drawing the distinction between synthetic and analytic judge-
ments. In calling the truths of geometry synthetic and a priori, he revealed their
true nature. And this is still worth repeating, since even to-day it is often not
recognized. If KANT was wrong about arithmetic, that does not seriously detract,

in my opinion, from the value of his work. His point was, that there are such things

as synthetic judgements a priori; whether they are to be found in geometry only, or
in arithmetic as well, is of less importance.”
It might be asked how Frege reconciled this Kantianism with the
existence (and consistency relative to Euclidean geometry) of systems
of non-Euclidean Geometry. Such systems were in fact.well-known
to the mathematical community by the 1880’s. Frege argues that,
although systems of non-Euclidean geometry are logically possible,
Euclidean geometry is the only one which agress with intuition. This
is how he puts it, (1884) Foundations of Arithmetic, § 14, pp. 20e-21e:
“... the truths of geometry govern all that is spatially intuitable, whether actual or
product of our fancy. The wildest visions of delirium, the boldest inventions of
legend and poetry, where animals speak and stars stand still, where men are turned
to stone and trees turn into men, where the drowing haul themselves up out of
swamps by their own topknots — all these remain, so long as they remain intuit-
able, still subject to the axioms of geometry. Conceptual thought alone can after a

fashion shéke off this yoke, when it assume, say, a space of four dimensions or
positive curvature. To study such conceptions is not useless by any means; but itis
to leave the ground of intuition entirely behind. If we do make use of intuition even
here, as an aid, it is still the same old intuition of Euclidean space, the only space of
which we have any picture. Only then the intuition is not taken at its face value, but
as symbolic of something else; for example, we call straight or plane what we
actually intuite as curved. For purposes of conceptual thought we can always
assume the contrary of some one or other of the geometrical axioms, without
involving ourselves in any self-contradictions when we proceed to our deductions,
despite the conflict between our assumptions and our intuition.”
It seems to me however that Kantian intuition i.e. direct perception is
not sufficient to decide whether space is Euclidean, or whether it has
a small positive or negative curvature. Such a decision can only be
made on the basis of very delicate measurements using refined in-
struments. It is not a matter which can be determined a priori.
Frege’s view on this question is indicative of his prejudice against
empiricism, and in favour of a priori knowledge. Indeed Frege makes
no secret of his opposition to empiricism. Regarding his philo-
sophical views, he writes, (1884) Foundations of Arithmetic, Intro-
duction, pp. Xe-XIe:
“Their reception by philosophers will be varied, depending on each philosopher’s
own position; but presumably those empiricists who recognize induction as the
sole original process of inference (and even that as a process not actually of
inference but of habituation) will like them least.”
Moreover Frege criticizes Mill in very harsh terms, but before we

come to this, we must first examine Mill’s own views.




Chapter 3.
Mill’s Theory of Mathematics

Mill’s views on the philosophy of mathematics are set out in his
(1843) A System of Logic Book II Chs 5 & 6, and Book III Ch. 24. Our
main concern will be Mill’s account of arithmetic, but, as in the case
of Kant, we will consider his theory of geometry as well in order to
form a better over-all picture of his approach to mathematics.
Indeed, as the empiricist view of geometry is perhaps simpler and
more plausible than the empiricist view of arithmetic, we will make it
our starting point.

Mill thinks of geometry as Euclidean geometry, and consequently
as a body of knowledge deduced from a few axioms and definitions.
But while Kant held that Euclid’s axioms were known a priori, Mill
argues that they are founded on observation and experiment. As he
says, (1843) A System of Logic. Book II. Ch. 5 § 4 pp. 151-2:

“It remains to inquire, what is the ground of our belief in axioms — what is the
evidence on which they rest? I answer, they are experimental truths; general-
isations from observations. The proposition, Two straight lines cannot enclose a
space — or, in other words, two straight lines which have once met do not meet

~ again, but continue to diverge — is an induction from the evidence of our senses.”
Mill believed that his empiricist theory of mathematics contradicted
standard views on the subject, and would consequently be subject to

severe attacks. As he says, op. cit. Book II. Ch. 5 § 4 p. 152:

. “This opinion runs counter to a scientific prejudice of long standing and great
strength, and there is probably no proposition enunciated in this work for which a
more unfavourable reception is to be expected.” )

Mill’s gloomy expectations certainly proved justified — at least as far
as Frege is concerned. However the opponent whom Mill himself
had in mind was Whewell — the leading English Kantian of the day.
Mill goes on immediately to expound the alternative views of
Whewell, op. cit. Book II. Ch. 5. § 4 p. 152:
“It is not necessary to show that the truths which we call axioms are originally
suggested by observation, and that we should never have known that two straight
lines cannot enclose a space of we had never seen a straight line: thus much being
admitted by Dr. Whewell and by all, in recent times, who have taken his view of
the subject. But they contend that it is not experience which proves the axiom; but
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that its truth is perceived & priori, by the constitution of the mind itself, from the
first moment when the meaning of the proposition is apprehended, and without
any necessity for verifying it be repeated trials, as is requisite in the case of truths
really ascertained by observation.”

Much of Mill’s discussion of geometry is taken up with criticizing the
view that the truth of the axioms is based on some kind of a priori
intuition. Before we come to this, however, let us examine briefly
how he develops his positive views on geometry.

One of Mill’s interesting claims is that the definitions of Euclidean
geometry are, like the axioms, based on observation and experiment.
Indeed the definitions are not merely verbal, but assert matters of
fact. Thus the definition of circle asserts, according to Mill, that
circles do actually exist in the empirical world. He speaks, (1843) A
System of Logic. Book II. Ch. 6. § 2. p. 169, of:

“... definitions in the geometrical sense, not the logical; asserting not the meaning
of a term only, but along with it an observed matter of fact. The proposition, “A
circle is a figure bounded by a line which has all its points equally distant from a
point within it,” is called the definition of a circle; but the proposition from which
so many consequences follow, and which is really a first principle in geometry, is,
that figures answering to this description exist.”

This opinion is somewhat doubtful. I can for example define a plane,
regular, chiliagon (i.e. polygon with a thousand sides), and I can even
from the definition prove theorems about such figures. For example
itis an easy matter to calculate the magnitude of the (equal) angles of
a plane regular chiliagon. Yet no figure answering to this description
exists in the sense required by Mill i.e. has been drawn on paper, or
constructed in some other way.

There is also a difficulty even in the case of a simple figure such as
a circle. Now, without doubt, numerous circles have been drawn and
constructed in various ways. However, it could be objected that such
circles are not really circles in the full geometrical sense, because, for
example, their various radii will never be exactly equal and so on.
More generally against Mill’s view that the axioms of geometry are
verified empirically, it could be objected that these axioms are really
contradicted by experience, since we never in practice meet with
infinitely thin lines, points without extensions, and the other entities
dealt with by Euclid.

Mill himself considers objections of this kind, and he replies that
the points, lines and circles of Euclid are only approximations to the
points, lines and circles which exist in the material world. However
this approximation is generally speaking good enough for practical
;lmrposes. As he says (1843) A System of Logic. Book II. Ch. 5§ 1 p.

48: :
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“The correctness of those generalisations, as generalisations, is without a flaw: the
equality of all the radii of a circle is true of all circles, so far as it is true of any one:
but it is not exactly true of any circle; it is only nearly true; so nearly that no error
of any importance in practice will be incurred by feigning it to be exactly true.”

Moreover, as Mill goes on to say, corrections for the finite thickness
of lines etc. can always be introduced, should this be necessary, in a
particular case. He also argues, op. cit. Book II. Ch. 5. § 4. p. 153
Footnote, that we can obtain inductive support for Euclid’s axioms
by observing ever thinner lines and extrapolating.

Mill seems to me to be on strong ground here. In many sciences
which are generally agreed to be empirical rather than a priori, we
find that use is made of entities which agree only approximately and
not exactly with what is observed. An obvious example comes from
the theory of gases. Here physicists consider the ideal gas and its
laws. No observed gas is ever ideal, but calculations about ideal gases
are not useless because certain actual gases under certain
circumstances do approximate in their behaviour to that of an ideal
gas. Moreover where deviations from ideal gas behaviour do occur,
corrections can be introduced, and the deviations at least partly
explained.

Mill does not deny that we believe strongly in the truth of the
axioms of geometry, but he claims that this strong belief can be
explained by the fact that there is very strong observational and
experimental evidence for these axioms. We do not need to appeal to
any a priori intuitions to convince ourselves of the truth of geometry.
As he says, (1843) A System of Logic. Book II. Ch. 5. § 4. p. 152:

“... the truth of the axiom, Two straight lines cannot enclose a space ... is ... evident
from experience. ... the axiom ... receives confirmation in almost every instant of
our lives, since we cannot look at any two straight lines which intersect one another
without seeing that from that point they continue to diverge more and more.
Experimental proof crowds in upon us in such endless profusion, and without one
instance in which there can be even a suspicion of an exception to the rule, that we
should soon have stronger ground for believing the axiom, even as an experimental
truth, than we have for almost any of the general truths which we confessedly learn
from the evidence of our senses.”
Since there is such strong empirical evidence for the truth of the
axioms of geometry (or more strictly for claiming that they hold to a
high degree of approximation), there is no need to postulate a priori
intuitions. Mill thinks that the burden of proof is on his opponents to
demonstrate that such intuitions exist, and that their attempts to do
so are largely unsuccessful.
Mill is prepared to concede that we can verify the axioms of

geometry by what Whewell calls “imaginary looking”, and what
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Kant himself would probably describe as “exhibiting the conceptina
(pure) intuition”. However he argues that this is only so because,
(1843) A System of Logic. Book II. Ch. 5. § 5. p. 154:

“... the imaginary lines exactly resemble real ones, ...”"
Moreover Mill argues, following a certain Professor Bain, that, op.
cit. Book II. Ch. 5. § 5. p. 155:
“The psychological reason why axioms, and indeed many propositions not
ordinarily classed as such, may be learnt from the idea only, without referring to
the fact, is that in the process of acquiring the idea we have learnt the fact. The
proposition is assented to as soon as the terms are understood, because in learning
to understand the terms we have acquired the experience which proves the pro-
position to be true.”
Mill now goes on to criticize the Kantian view that some propositions
have, (1783) Prolegomena § 2 pp. 18-19, a “necessity, which cannot
be taken from experience.” Following Whewell, Mill quite reason-
ably takes a necessary proposition to be one whose negation is not
only false but inconceivable, and he comments, (1843) A System of
Logic. Book II. Ch. 5 § 6 pp. 156-7:

“This, therefore, is the principle asserted: that propositions, the negation of which
is inconceivable, or in other words, which we cannot figure to ourselves as being
false, must rest on evidence of a higher and more cogent description than any
which experience can afford.”

Mill replies along Humean lines that the alleged necessity of these
propositions is a mere psychological illusion caused by the fact either
that the propositions are based on very familiar experience, or
perhaps simply by the fact that the propositions themselves are very
familiar and have become an established part of our thinking. As
Mill himself says, (1843) A System of Logic. Book II. Ch. 5. § 5. p.
157

“Now I cannot but wonder that so much stress should be laid on the circumstance
of inconceivableness, when there is such ample experience to show that our
capacity or incapacity of conceiving a thing has very little to so with the possibility
of the thing in itself, ... . There is no more generally acknowledged fact in human
nature than the extreme difficulty at first felt in conceiving anything as possible
which is in contradiction to long-established and familiar experience, or even to
old familiar habits of thought.”

Mill argues for this thesis by citing a number of examples, from the
history of science, of propositions which were once thought to be
inconceivable, but are now held to be true. For example it was once
thought to be inconceivable that men should live at the antipodes
since they would fall off. The Cartesians, including Leibniz, held that
gravitational attraction at a distance was inconceivable. The
opponents of Copernicus regarded the motion of the earth as incon-
ceivable, and so on.
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Mill discusses attitudes to Newton’s first law of motion (Every
body continues in its state of rest, or of uniform motion in a right line,
unless it is compelled to change that state by forces impressed upon
it) as showing that familiarity produces the illusion of necessity. At
first the law seemed to people obviously false, since it appears to be a
common fact of experience that motions, once acquired, tend to
diminish gradually and then cease. However, no sooner had the law
become part of established science than the Kantians claimed it to be
a priori necessary.

Mill ironically cites Whewell as a remarkable instance of the
psychological law that familiarity creates the illusion of necessity.
Whewell, Mill argues, being such a learned scientist, had made
himself so familiar with the laws of chemical composition that he had
come to regard themv-as a priori necessary while their original
discoverer was still living, €ven though the laws had only been esta-
blished by laborious and exact experiments.

This polemic of Mill’s against Whewell and the Kantians is not
only sparkling in style, but compelling in content. The verdict of
history is undoubtedly that many propositions once supposed to be
necessarily true were later shown to be false. Thus the alleged
necessity of any proposition should always be regarded with sus-
picion as possibly a psychological illusion.

Mill’s empiricist view of geometry was later to be remarkably
strengthened by the discovery of non-Euclidean geometry, and its
application in general relativity. Once again propositions which had
been held to be a priori necessary (Euclid’s axioms) were shown to be
false, or, perhaps better, to hold only approximately.

When Mill wrote in 1843, he could in principle have known of
non-Euclidean geometry, since Bolyai and Lobachevsky had already
published their systems of hyperbolic geometry, and Lobachevsky
had even produced versions of his theory in both French and
German. However Mill clearly did not know of their work, since he
speaks of the axioms of Euclidean geometry as, (1843) A System of
Logic. Book II. Ch. 5. § 6 p. 160, convictions:

“‘of the conclusiveness of which, from the earliest records of human thought, no
sceptic has suggested even a momentary doubt...”
Mill’s ignorance of non-Euclidean geometry is not surprising since it
did not become widely known in Western Europe until the late
1860s. Thus non-Euclidean geometry provided striking independent
evidence for a view which Mill originally advocated on other
grounds.
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Mill’s treatment of arithmetic is along the same lines as his treat-
ment of geometry. He begins by remarking, (1843) A System of
Logic. Book II. Ch. 6. § 1 p. 166:

“Itis harder to believe of the doctrines of this science than of any other, ... that they
are not truths & priori, but experimental truths...”
Nonetheless Mill claims that this is indeed the case. For example the
proposition 2 + 2 = 4’ is'based on a number of facts which may be
verified by experiment and observation such as the following. If I
count out 2 apples and put them into an empty box, and count out 2
more apples and put them into the box, then, if I count the apples in
the box, I will arrive at the figure four. Again if I count the apples in
the box in different orders, I will still reach the number four, and the
same will apply if I arrange the apples into a different shape and the
recount them. The laws of arithmetic are simply inductive general-
isations from observed facts such as these. This is how Mill himself
puts it, (1843) A System of Logic. Book II. Ch. 6. § 2. pp. 168-9:
“Three pebbles in two separate parcels, and three pebbles in one parcel, do not
make the same impression on our senses; and the assertion that the very same
pebbles may by an alteration of place and arrangement be made to produce either
the one set of sensations or the other, though a very familiar proposition, is not an
identical one. It is a truth known to us by early and constant experience — an
inductive truth; and such truths are the foundation of the science of Numbers. The
fundamental truths of that science all rest on the evidence of sense; they are proved
by showing to our eyes and our fingers that any given number of objects, ten balls,
for example, may by separation and rearrangement exhibit to our senses all the
different sets of numbers the sum of which is equal to ten. All the improved
methods of teaching arithmetic to children proceed on a knowledge of this fact. All
who wish to carry the child’s mind along with them in learning arithmetic; all who
wish to teach numbers, and not mere ciphers — now teach it through the evidence
of the senses, in the manner we have described.” .
Mill remarks that we can regard the equation 3 = 2 + | as a
definition of the number three, but such definitions, as in the case of

geometry, really assert facts, op. cit. Book IL. Ch. 6. § 2. p. 169:
“And thus we may call “Three is two and one” a definition of three; but the
calculations which depend on that proposition do not follow from the definition
itself, but from an arithmetical theorem presupposed in it, namely, that collections
of objects exist, which while they impress the senses thus, 000, may be separated
into two parts, thus, 00 o. This proposition being granted, we term all such parcels
Threes, after which the enunciation of the.above-mentioned physical fact will
serve also for a definition of the word Three.” .

In the case of geometry, Mill argued that the axioms and theorems

are not exactly true, but hold only approximately of empirical lines,

points, circles etc. Indeed he seems to regard this as being a charac-

teristic feature of laws founded on experience. Such laws either hold

only approximately, or admit of exceptions which are tacitly ex-
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cluded. As an example of the latter situation, we might consider the
law that man is a biped. Now strictly speaking this law is contradicted
by anyone who has had a leg amputated, or by the occasional freak
cases of people born with three legs. However, such exceptions are
tacitly excluded when the law is stated. Indeed this convention .of
tacit exclusion is employed in any textbook of biology which
descans the characteristics of animal and plant species.

Now if the laws of arithmetic are founded on observation and
€xpenment, they too should, according to Mill, hold only
approximately or admit of exceptions. Indeed Mill tries to give
examples to show that this is really the case. He argues that
arlth.n_met}cal truths are not exactly correct in some cases, because the
empirical units involved may not be exactly equ
of Logic. Book IL Ch. 6. § 3. p. 170, > - (1843) A System

“How can we know that one pound and one pound make two pounds, if one of the

pounds may be troy, and the other avoirdupois? They may not make two pounds of
either, or of any weight.”

This example is perhaps not a very happy one, since it could be
argued that, when we apply equations like 1 + 1 = 2 to weighing
substances, there is a tacit convention that the same system of units is
used throughout the equation. However there are a number of
familiar examples which seem better adapted to making Mill’s point.

Suppose we put two rabbits into an empty enclosure, and then
another two. We may find after a lapse of time that there are not four
rabbgts in the enclosure, but five, six or seven — even though no
rabbits have been added or removed. Again if we add one drop of
water to another drop, we may find not two drops of water but one
larger drop. Such examples are sometimes cited to show that the
truths of arithmetic are not empirical. The argument is that if equ-
ationslike2 + 2 = 4orl + 1 = 2 were empirical generalisations, we
would regard them as refuted by the rabbits or water drops; but we
do not in fact takes these counter-examples as refuting the equations,
;md this, it is claimed, shows that the equations are not empirical
aws. '

It seems to me that the opposite conclusion could be drawn from
these examples. The laws of arithmetic are empirical generalisations,
but hold only under certain conditions, namely that the objects
counted should not reproduce or coalesce etc. As with other
empirical laws, these limiting conditions are tacitly assumed without
being explicitly stated.

This concludes my account of Mill’s view of arithmetic. Let us now
turn to Frege’s criticisms.
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Chapter 4.
Frege’s Criticisms of Mill

We have seen that Frege regarded Kant as, (1884) Foundations of
Arithmetic. § 89. p. 101e: :
** a genius to whom we must all look up with grateful awe";
and Frege’s disagreement with Kant is only partial. Frege’s attitude
towards Mill is very different. He appears to regard Mill as a block-
head, and always refers to him in a contemptuous polemical tone.
Thus, typically, Frege writes of Mill, op. cit. § 7. p. 9e:
“... but this spark of sound sense is no sooner lit than extinguished,”
and again, op cit. Introduction. p. VIIe: )
“What, then, are we to say of those who, instead of advancing this work where it is
not yet completed, despise it, and betake themselves to the nursery, ... there to
discover, like JOHN STUART MILL, some gingerbread or pebble arithmetic! It
remains only to ascribe to the flavour of the bread some special meaning for the
concept of number.”
The tone of these remarks is indicative of Frege’s hostility to
empiricism — a hostility which we have already remarked on.

Mill, it will be remembered, held that we can define numbers as 2
=1+ 1,3=2+1,4=3+1,..— thisis his “spark of sound
sense”. However, he also held that these definitions depend on
general empiral facts about the world which are established by ex-
perience and induction. These are facts about the existence of dis-
crete objects, about possible arrangements of such objects, etc. This
empiricist doctrine is what, for Frege, extinguishes the spark of
sound sense.

Let us now summarize Frege’s arguments against Mill. First of all
Frege uses his favourite device of considering large instead of small
numbers. We may think of 2 + 1 = 3 as established by sense
experience, but what of: 999999 + 1 = 1,000,0007 (1884)
Foundations of Arithmetic § 7 p. 9e:

“But what in the world can be the observed fact, or the physical fact (to use another
of MILL’s expressions), which is asserted in the definition of the number 777864?”

and again, op. cit. § 7. pp. 10e-11e:
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“On MILL’s view we could actually not put 1,000,000 = 999,999 + 1 unless we
had observed a collection of things split up in precisely this peculiar way, ...”

Herea}gain it must be admitted that Frege has a good point. It is quite
plausible to argue that equations involving small numbers, such as 2
+ 1 =30r2 + 2 = 4, can be verified experimentally by counting
pebl?les or apples; but this account breaks down for equations in-
volving large numbers such as Frege’s 135664 + 37863 = 173527.

~ Weargued in chapter 2 that F rege’s argument from large numbers
is fa.te}l to.the Kantian view that arithmetical truths are founded on
mttpgon. It. seems to me, however, that the argument is a much less
dec1§1ve criticism of Mill’s empiricist views. It may make some
modification of these views necessary, but does not refute them
completely.

The point here is that many mathematical sciences, which are
generally admitted to be founded on observation and experiment,
nonetheless‘ contain equations which cannot be directly verified by
Sense expenience. These equations are believed because they have
consequences which can be checked and verified experimentally.
An obvious example here is Mawell’s equations. We cannot directly

verify that .e.g. curl H = 4ITj + é%?— in any simple way. But,
nonetheless, our belief in Maxwell’s equations is ultimately founded
In observations of electromagnetic phenomena. Similarly the equ-
ations of decimal arithmetic involving large numbers are believed
because pf the (indirect) confirmation they receive in a multitude of
observations, experiments, and practical applications. This, however,
is perhaps a development of Mill’s position. Let us therefore return to
Mill himself.

Frege rejects Mill’s account for small numbers as well as for large.
He says, (1884) Foundations of Arithmetic § 7 p. 9

“Of all the whole wealth of physical facts in his apocalypse, MILL names for us
only a solitary one, the one which he holds is asserted in the definition of the
nur.nber 3. It consists, according to him, in this, that collections of objects exist,
which while they impress the senses thus, 000, may be separated into two parts,
thus, 00 0. Whata mercy, then, that not everything in the world is nailed down; for
if it were, we should not be able to bring off this separation and 2 + 1 would not be
3! What a pity that MILL did not also illustrate the physical facts underlying the

numbers 0 and 11”
Mill could perhaps reply here that of everything in the world was
nailed down, human life would become impossible, and, even if
intelligent beings could exist under these circumstances, it is not
likely that they would have arithmetic. Not is it clear why Frege
thinks that there is a special difficulty regarding the numbers 0 and 1.
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Suppose we accept that the equation 2 + 2 = 4 can be verified
empirically by counting apples into a box. We could perform an
exactly similar verification for 0 + 1 = 1. It would go like this. Take
an empty box, and place one apple in it. It will then be found that
there is one apple in the box. It is certainly true that the facts here are
rather trivial, but, according to the observations of Piaget and other
child pyschologists, such facts do at first surprise and interest young
babies.

Frege’s next argument is that, on Mill’s view, one could not have a
number of non-physical objects. Indeed the passage just quoted
continues, op. cit. § 7. pp. 9¢-10e:

“*“This proposition being granted,” MILL goes on, “we term all such parcels
Threes.” From this we can see that it is really incorrect to speak of three strokes
when the clock strikes three, or to call sweet, sour and bitter three sensations of

taste; and equally unwarrantable is the expression “three methods of solving an

equation.” For none of these is a parcel which ever impresses the senses thus, 060.”
Here Frege is being somewhat unfair, for Mill does explicitly state
that arithmetic applies to objects of any kind, (1843) A System of
Logic. Book II. Ch. 6. § 2. p. 167:

“Propositions ... concerning numbers have the remarkable peculiarity that they are

propositions concerning all things whatever; ... . That half of four is two, must be

true whatever the word four represents, whether four hours, four miles, or four

pounds weight.”
Nor is this difficult to accomodate on Mill’s empiricist position. 2 + 1
= 3 may be verified first for apples, sticks and pebbles, but we can
then learn by further experience that it applies to strokes of the clock
etc.

Frege next accuses Mill of confusing arithmetical propositions
with their applications. For Frege, 2 apples and 2 apples make 4
apples is an application of 2 + 2 = 4, but the two kinds of pro-
position are distinct, (1884) Foundations of Arithmetic § 9 p. 13¢:

“MILL understands the symbol + in such a way that it will serve to express the
relation between the parts of a physical body or of a heap and the whole body or
heap; but such is not the sense of that symbol. That if we pour 2 unit volumes of
liquid into 5 unit volumes of liquid we shall have 7 unit volumes of liquid, is not the
meaning of the proposition 5 + 2 = 7, but an application of it, which only holds
good provided that no alteration of the volume occurs as a result, say, of some
chemical reaction. MILL always confuses the applications that can be made of an
arithmetical proposition, which often are physical and do presuppose observed
facts, with the pure mathematical proposition itself.”
Mill might reply that you cannot separate the pure mathematical
proposition from its applications, since the meaning of the former
depends on the latter. Such a view would gain support from the
theory of meaning in Wittgenstein’s later philosophy. According to
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Wittgenstein, the meaning of a word is given by its use in various
social activities. Thus to understand the meaning of the symbols 2, 5,
7 etc., someone would have to know how they are used in everyday
social life. For example he would have to know how they are
employed in counting out bricks on the building site, to use
Wittgenstein’s favourite example (c.f. (1953) Philosophical Inves-
tigations § 8 p. 5¢). This point of view is also supported by the fact
that we could not teach children the meaning of number words
without at the same time teaching how they are used in the typical
applications of ordinary life.

Frege has one last interesting argument against founding arith-
metic on experience and induction. He argues that induction
depends on probability and hence on arithmetic, rather than' vice
versa, (1884) Foundations of Arithmetic § 10, pp. 16e-17¢:

“Induction must base itself on the theory of probability, since it can never render a

proposition more than probable. But how probability theory could possibly be
developed without presupposing arithmetical laws is beyond comprehension.”

Various answers could be made to this argument depending on the
attitude adopted to confirmation theory. Here I shall just state my
own view,

There is no doubt that, in both science and everyday life, people do
speak of evidence confirming, supporting, rendering probable, cor-
roborating, etc. a theory or a prediction. This relation of con-
firmation is certainly needed in empirical reasoning. Now the
Bayesians hold that confirmation can be rendered quantitative i.e.
measured by a real number (which may in the subjective version vary
from individual to individual). They further hold that these numbers
satisfy the axioms of probability. This seems to be the view of Frege.

To me, however, it seems most unlikely that confirmation will ever
be rendered quantitative in a satisfactory manner. We can certainly
make qualitative judgements of confirmation e.g. the evidence e
supports theory T, better than theory T,, but I doubt whether it will
ever be possible to derive non-arbitrary values for the degree of such
Support e.g. ¢ supports T, to degree 0.63, and T, to degree 0.76.
Moreover such measures of support, even if they were possible,
would not seem to be of much use. Science and technology have
progressed very satisfactorily to date without a quantitative concept
of confirmation, and it is highly doubtful whether, and in what way,
such a concept would improve scientific and technological practice.
But it confirmation remains a qualitative concept, it does not pre-
suppose arithmetic, and Frege’s argument falls to the ground.
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Chapter 5.
The content of a statement of number

is an assertion about a concept

Let us now turn to an exposition of Frege’s own positive views
regarding the foundations of artihmetic. We have already pointed
out that, in order to establish his logicist thesis, Frege has to give a
definition of number in terms of purely logical notions, and to show
that all arithmetical reasoning, particularly reasoning from n to n+ 1,
or the principle of mathematical induction, can be reduced to logical
inference. We will discuss Frege’s attempts to do these things in
chapter 7, but, before coming on to this, we will give an account of
two doctrines of Frege’s which have considerable interest irrespec-
tive of whether the logicist thesis is correct or not. One of these
concerns the question of whether and in what sense numbers may be
said to exist. We will deal with this in Ch. 6. The other will be the
subject of the present chapter. Frege sums it up as the claim that the
content of a statement of number is as assertion about a concept. We
will describe it, rather more briefly, as the claim that numbers are
properties of concepts and not of external things. This formulation is
not strictly correct according to Frege for reasons which we shall
explain in due course, but it will nonetheless serve us as a useful
shorthand. :

Consider then an expression like: ‘four thoroughbred horses’.
(This is Frege’s own example c.f. (1884) Foundations of Arithmetic
§ 52 p. 64¢). Now here ‘thoroughbred’ is a property of the horses, and
the grammatical construction of the phrase suggests that ‘four’ too
might be a property of the horses, and that in general number might
be a property of external things. However Frege rejects this con-
clusion. Number, he argues, depends not just on the things consid-
ered, but on how they are considered. For example, (1834)
Foundations of Arithmetic § 25 p. 33¢:

“One pair of boots may be the same visible and tangible phenomenon as rwo
boots.”

and again, (1884) Foundations of Arithmeticc § 22 p. 28e:
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“If1 give someone a stone with the words: Find the weight of this, I have given him
precisely the object he is to investigate. Butif I place a pile of playing cards in his
hands with the words: Find the Number of these, this does not tell him whether I
wish 10 know the number of cards, or of complete packs of cards, or even say of
honour cards at skat!.”

What Frege says here is a little doubtful, since it would be most
natural to assume, in the circumstances he describes, that the number
of cards was being requested. However, he is undoubtedly right that
one could instead ask for the number of complete packs of cards, or
of honour cards at skat.

From examples such as the boots and the cards, Frege draws the
conclusion that number is not a property of external things, but of
concepts. (1884) Foundations of Arithmetic § 46, p. 59e:

“... the content of a statement of number is an assertion about a concept. This is
perhaps clearest with the number 0. If T say “Venus has 0 moons”, there simply
does not exist any moon or agglomeration of moons for anything to be asserted of;
but what happens is that a property is assigned to the concept “moon of Venus”,
namely that of including nothing under it. If I say “the King’s carriage is drawn by
four horses”, then I assign the number four to the concept “‘horse that draws the
King’s carriage”.”
In a digression from his main theme, Frege uses this doctrine to
criticize the ontological argument for the existence of God. This
argument may be stated as follows. Consider a being who has all the
perfections i.e. all the admirable qualities such as goodness, truth,
wisdom, justice, etc. Such a being is possible since no two perfections
contradict each other. Therefore such a being must actually exist,
since existence is a perfection.

Frege replies that existence, like number, is a property of concepts.
Indeed any existence statement is an assertion that one or more
things fall under a particular concept. To say that horses exist is to say
that at least one object falls under the concept ‘horse’. On the other
hand perfections are properties of things not concepts. Thus exis-
tence cannot be a perfection, and the ontological argument fails. This
is how Frege himself puts it, (1884) Foundations of Arithmetic, § 53,
p. 65¢:

“In this respect existence is analogous to number. Affirmation of existence is in

fact nothing but denial of the number nought. Because existence is a property of
concepts the ontological argument for the existence of God breaks down.”

It will be noted that Frege does here describe existence as a property
of concepts. In the case of number he holds that this way of taking is,
strictly speaking, illegitimate. This is because, in his philosophy of

! Skat: a three-handed card-game much played in Germany. (Oxford English Dic-
tionary).
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logic, he draws a strict distinction between ‘concepts’ m.]d ‘objects’. A
concept has a‘hole’or‘holes’in it e.g. ... is a horse, 0r,... is to the left of

..., where the dots indicate the holes. An object is something which

fills these holes. Now as we shall see in the next two chapte.rs,
numbers are, for Frege, objects and hence not concepts or properties.
Thus instead of saying that number is a property of concepts, we
should use the circumlocution: ‘the content of a statement of number
is an assertion about a concept’. We will however continue to use the
shorter, though, an Frege’s view somewhat less accurate, mode of
expression. ‘ i '
Frege’s arguments on this point are interesting, but it is possible to

draw from them a conclusion somewhat different from his own. To
see this let us consider again his example of the pile of playing cards.
Suppose we have a particular such pile, call it II. We can then
associate with IT several different numbers viz. the number of cards
in I1, the number of complete packs in II, the number of honour
cards at skat in IT etc. Frege concludes that we cannot associate
numbers with particular physical objects such as II, but only with
concepts. In this instance we would have the following concepts:

Cong (...) = ger.--is acard in I1

Conp (...) = ger-.. is a complete pack in I1

Cony (...) = gef ... 1s an honour card at skat in II
However there is another possibility. Instead of associating numbers
with concepts, we could associate them with sets. In this case we
would have the following sets:

Setc = gerthe set of cards in IT

Setp = 4erthe set of complete packs in I1

Sety = gerthe set of honour cards at skat in IT.
At first sight it might seem that this is a completely trivial alteration
of Frege’s suggestion since the sets here are just the extensions of the
corresponding concepts. So, it might be argued, it is a matter of
indifference whether we consider sets or concepts. Indeed, in the
usual notation, we have that, if Con (...) is an arbitrary concept, the
extension of Con (...) = the set of x such that Con(x) = % Con(x);
and in this case

Setc = & Cong (x)

Setp = % Conp (x)

Sety = % Cong (x)
However, as we shall see in chapter 12, it was precisely the transition
from a concept to its extension which gave rise to Russell’s paradox.
This transition cannot therefore be considered simple and unpro-
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blematic, but, on the contrary, obscure and difficult. Correspond-
ingly we cannot take the two suggestions: (1) numbers are properties
of sets, and (2) numbers are properties of concepts to be straightfor-
wardly equivalent. One of the two suggestions must be preferred, and
I shall next argue against Frege that (1) is better than ).

Before stating My argument, it will be as well to make a remark
about terminology. In what follows, I shall use the terms: “set”,
“class”, “collection”, “aggregate”, etc. as interchangeable. Now for
certain purposes e.g. NBG set theory,! it is necessary to make dis-
tinctions between some of these terms — in the case cited between
“set” and “class”. But, for our own purposes, distinctions of this sort
will not be necessary.

Our thesis then is that numbers are better considered as properties
of sets (or classes or collections or etc.) than as properties of concepts.
Itis interesting to note that Frege considers and explicitly rejects this
view, (1884) Foundations of Arithmetic § 45, p. 58e: '

“The terms “multitude”, “set” and “plurality” are unsuitable, owing to their
bagueness, for use in defining number.”

As we shall see, he attacks the set-theoretic approach further when
crticizing Dedekind and Schroder. I myself have two reasons for
preferring sets to concepts. The first is that sets, classes, or collections
do occur naturally as part of the material world, whereas concepts
are often introduced secondarily merely as ways of describing these
naturally occurring aggregates. The second is that a treatment based
on sets is mathematically much simpler than one based on concepts.
Here I believe is a case in which simplicity is the sign of truth.

Let us begin with the more metaphysical line of thought. Material
reality consists of materia] things (whether stones, plants, animals or
human beings) which stand in definite relationships to each other.
These relationships have as much reality as the material things
themselves. Thus, for example, a plant growing in the ground, and an
insect flying through the air, may, at first sight, seem two distinct and
separate material things, but yet in reality they are strongly inter-
connected. Many flowers cannot reproduce without being pollinated
by insects, while many insects cannot survive without obtaining
nectar from flowers. Note also that these relationships have nothing
to do with human consciousness since they existed long before the
appearance of man.

Now, as a result of these objective relationships, some things are

! The form of set theory developed by von Neumann, Bernays, and Godel.
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bound together to form natur_ally occurring aggregates. Aptob¥1o;1:

example of such an aggregate is a colony of bees. This consists owoll

queen, 40,000 or 50,000 workers, and a few pundred drones. 1?11-

known relationships exist between these various types qf bee. The

queen lays the eggs. The workers collect nectar, turn it into l'}lc?n_ey,
and tend the young. The drones have the sole function of ferti ?lrl;g

the queen, and are, with the agpr.oach of winter, expelleq. (c.l; .

Chauvin, (1963) Animal Soc1eges Ch. 1). Opce again these

relationships have nothing to 510 \ylth huln;an consciousness, since, as

i i . ¢it. Introduction p. 11:

Ch%}xlll? a‘::l.ll::s’ Sge (;llrtealtg' in existence 4(1)) million years ago at least, and scarcel);‘
differ from those we know today. ... And Homo sapiens has hardly 150,000 years o
existence...”

Other examples of naturally occurring sets would be: the leavlcis o? a

tree, the.trees of a wood, the planets of t'he solar system, thelcl:e s of ﬁ

living organism, etc. Now, if the matter is considered carefu ly, it “',:h

be found that numbers are nearly always used in conn‘ecuon \la:q
such naturally occurring aggregates, where I here use natural’ or

‘material’ in a broad sense to include human beings and their art::i-

facts: that is, I consider man as part of the natural. or material world.

True, we can form bizarre sets such as that consisting of the hanh-

kerchief in my pocket, the President of the_ United S.tates, and the

Eiffel Tower; and there is no difficulty in seeing that this set has threi

members. However, such cases are artificial examplqs, and the usua

applications of arithmetic deal with naturall)f occurring collections.
Now, whenever we have a naturally occurring set S, we can always

introduce a corresponding concept (Con(x) say) sucl} that x fglls
under the concept if and only if it belongs to the set. This concept 11 a
way of describing the members of the given set. However, if we take
the concept as being more fundamental th.an the se:t itself, we can
easily be led into error, for it then looks as if what binds the objects
together to form the set S is that they all possess the propertyf::x-
pressed by Con(x), whereas, in reah.ty, the me.mber.s of S are ohieg
bound together by a complicated series of relationships about ;v ic

Con(x) tells us nothing. We can illustrate this error by con_51h en?g

the following passage from Frege, (1884) Foundations of Arithmetic
§48p.6le: . N
“ lecting together far superior to the unifying power
o?g;nc&l;:;p;:;:r‘::f;x:o;; ﬂl::ns Ef tl%e latter it would not be possible to join

the inhabitants of Germany together into a whole; but we can certai:lly bring them
all under the concept “inhabitant of Germany” and number them.

This passage seems to me to contain both correct and incorrect
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points. It is certainly correct that the millions of inhabitants of Ger-
many cannot be viewed together in a Kantian intuition. This is
Frege’s argument from large numbers again. On the other hand it is
not true that what joins the inhabitants of Germany together is the
unifying power of a concept. In Frege’s day the inhabitants of Ger-
many did form a naturally occurring collection — a nation state. This
state had indeed only recently come into existence, and it is hardly
correct to say that it was formed by purely conceptual means. Indeed
J. A. S. Granville writes, (1976) Europe Reshaped 1848-1878 Ch. X V.
The Unification of Germany p. 303:

“Later patriotic myths have obscured the fact that Prussia in 1866 made war, not

only on Austria, but also on the majority of the German states.”
The inhabitants of a modern nation state are connected together by a
complicated series of relationships. These relationships, though not
physical in any direct sense, are nonetheless very real, since, for
example, they enable one nation state to wage war against another, as
Germany did against France in 1870,

Exactly the same argument applies to Frege’s other example of the
horses drawing the King’s carriage. These horses certainly form a
naturally occurring aggregate. They are not, however, bound
together by the concept: “horse that draws the King’s carriage”, but
rather by a system of harnessing,

The number “0” poses no difficulty for this doctrine, since it can be
associated with the empty set. However, 0 and the empty set are in a
certain sense degenerate or limiting cases. Consider Frege’s example:
“Venus has 0 moons”. The idea of considering the empty set of
moons of Venus surely arose in the following way. The naturally
occurring non-empty sets of moons of Jupiter and of the Earth were
observed. It was then an obvious step to consider: ‘the set of moons of
X’ where x is an arbitrary planet, and in this way sets were defined
which turned out to be empty. Such empty sets would surely never
have been thought of had there not been non-empty sets of the same
general type. Thus empty sets are, in a sense, parasitic on non-empty
sets.

Admittedly the notion of empty set did involve some difficulties
which, as we shall see, troubled those of Frege’s contemporaries
(Dedekind and Schréder) who advocated the set theoretic approach.
We shall consider these difficulties when we come on (in chapter 9)
to examine Dedekind’s views in detail. Our conclusion will be that
the problems involved can be overcome while still regarding the
notion of set as more basic than that of concept. :
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¢ himself drew the opposite conclusion. In his mte‘restmg
(li:;r;)gA Critical Elucidation of Some Poir_lts in E. Schg;der,s- ]I:l(::’im
lesungen tiber die Algebra der Logik, he f:onS1ders the pro er;ns t“:hese
the empty set creates for Schrﬁder’_s logic. Frege concludes tha hese
difficulties can only be satisfactorily resolved by taking concep a
basic, and regarding sets as extensions of concepts. He writes (op. cit.
pp- 103-104):

«... what else is there to constitute a class, if we ignore the concepts, tl.1e coI:nmplI
p.roperlies! - Only because classes are determined by the propem;s t ?:ts 1;1n
dividuals in them are to have, ... does it become possible to expre;s,f oug
general by stating relations between classa:'s; only so do we get a logic. dtuted
My answer to this has already been given. A class may be consti 1;1
not by its members all having a common propetl)'ty, but t hyesz
complicated system of relationships which hold between pes
members,efpe&h:gs between these members and other parts of the
A

material world. . . . .
Let us now turn to the mathematical considerations which favour

ing ‘set’ as more basic than ‘concept’, as far as the foundations
;i'g::i(tlllmgetic are concerned. As we shall argue later on (Chs iilax:d
11), regarding number as a property gf’concepts leads n:tpraF y to
‘the development of ‘higher-order logic’, such as we find in rege
himself and then later in Russell’s ramified theory of types. Regatrh-
ing number as a property of sets, on the other hand, .leadsdtok. s
set-theoretic approach to arithmetic such as we find firstin De et:h in
and then in the axiomatic set theory of Zemelo, Fraenkel, and (:h ers.
Now what is beyond doubt is that Zermelo-Fraenkel set theory
turned out to be mathematically simpler than {’rm_czga
Mathematica, and that it is much easier to develop antl}metlg within
set theory than within type theory and higher-order logic. Th:)s seems
to me to provide additional support for the claim the'tt numbers are
better considered as properties of sets than as properties of concepts.
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Chapter 6.
Frege’s Platonism

Anyone reflecting about numbers and arithmetic will soon find
himself or herself faced with what could be called the Platonic
Prob!em — the question, that is, of whether numbers exist, and, if so,
in what sense. Simple considerations suggest that we should recog-
nize the existence of numbers. For example, anyone, if asked
whether there are numbers between 4 and 7, would reply: “Yes there
are, namely 5 and 6. But, if there are numbers between 4 and 7, it
follows logically that there are numbers i.e. that numbers exist. On
the other hand, admitting that numbers exist often gives rise to a
feel_ir}g of unease, since numbers appear to be curious shadowy
entities very different from familiar material things such as tables
and chairs, cats and dogs, other people etc.

We can distinguish three views regarding the existence of numb-
ers. The first is that numbers do exist and are the subjective mental
constructions of individuals. This view is sharply citicized by Frege,
but was later adopted by Brouwer. The second is that numbers do
exist, but are objective rather than subjective or psychological. This
view could be called Platonism, and is supported by Frege. The third
is that numbers do not after all exist, since talk of numbers is always
reducible to talk of material things. This view could be called
reductionism. It is perhaps most easily explained by considering
statements about the average Englishman.

Let us suppose it to be true that p, where p = the average En-
glishman has 2% children. It is reasonable to suppose that every true
statement such as p apparently about the average Englishman is
reducible to a logically equivalent statement in which no mention is
made of the average Englishman. For example we can contruct a
statement (call it p*) logically equivalent to p as follows. Let n = the

number of Englishmen, and m = the number of children of En-
glishmen, then set

p'=m/n = 2%,
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The reductionist argues that accepting p as a true statement does not
commit us to accepting the existence of that shadowy pseudo-entity,
the average Englishman with his curious family, for p is reducible to
a logically equivalent statement p’ which does not mention the
average Englishman. Similarly, the reductionist would claim that
stayements apparently about numbers are reducible to logically
equivalent statements which do not mention numbers. Thus we do
not have to accept that numbers really exist, and these curious sha-
dowy entities fortunately disappear. Frege does not consider this
reductionist position, but, for the sake of completeness, we will
discuss it briefly after we have given an account of Frege’s own views.
First then let us consider Frege’s crtiticism of the subjective view of
number. Frege uses the term ‘idea’ to denote any particular content
of an individual consciousness. In an article published late in his life,
he explains his use of ‘idea’ as follows, (1918) Thoughts pp. 13-14:
“Even an unphilosophical man soon finds it necessary to recognize an inner world
distinct from the outer world, a world of sense-impressions, of creations of his
imagination, of sensations, of feelings and moods, a world of inclinations, wishes

and decisions. For brevity's sake I want to use the word ‘idea’ to cover all these
occurrences, except decisions.”

In this terminology, the subjective view of number can be formulated
as the claim that numbers are ideas. The first of Frege’s arguments
against this position is that if numbers were indeed ideas, there
would be not just one number two, but as many number twos as there
were people who had learnt arithmetic, for each such person would
have a different idea of two in his particular consciousness. This
consequence of the subjective position, Frege regards as absurd and
untenable. As he says, (1884) Foundations of Arithmetic § 27 p. 37¢:

“If the number two were an idea, then it would have straight away to be private to
me only. Another man’s idea is, ex vi termini (from the power of the boundary-line
— D.G.), another idea. We should then have it might be many millions of twos on
our hands. We should have to speak of my two and your two, of one two and all
twos. If we accept latent or unconscious ideas, we should have unconscious twos
among them, which would then return subsequently to consciousness. As new
generations of children grew up, new generations of twos would continually be
being born, and in the course of millennia these might evolve, for all we could tell,
to such a pitch that two of them would make five.”

Another argument of Frege’s is that the subjectivists make arithmetic
depend on psychology, whereas, surely arithmetic is more certain
and exact than psychology. As he puts it, (1884) Foundations of
Artihmetic, § 27, p. 38¢€:
“It would be strange if the most exact of all the sciences had to seek support
psychology, which is still feeling its way none too surely.”

These arguments against the subjective view of number seem to me
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strong, if not decisive, and yet just this view was adopted by Brouwer
in 1907 (23 years after Frege’s critique) when laying the foundations
of intuitionism. It is interesting then to ask whether Brouwer was able
to counter Frege’s criticisms, but it turns out that Brouwer never in
fact mentions Frege. As Heyting says, (1975) Footnote in A. Heyting
(ed.) L. E. J. Brouwer, Collected Works, Vol. 1, p. 568:

“Brouwer seems not to have known Frege’s work. He has never mentioned it.”
Letus now turn to Frege’s own positive views. He holds that numbers
do exist, though not as subjective, psychological ideas, but rather as
objective entities. On the other hand, they are not physical objects in
space and time. As he says, (1884) Foundations of Arithmetic, § 27,

. 38e:
P “And we are driven to the conclusion that number is neither spatial and physical,

like MILL's piles of pebbles and _gingersnaps, nor yet subjective like ideas, but
non-sensible and objective.”

In another place Frege tries to explain further his notion of some- -

thing which is objective without being tangible, (1884) Foundations
of Arithmetic, § 26, p. 35¢:

“I distinguish what I call objective from what is handleable or spatial or actual.
The axis of the earth is objective, so is the centre of mass of the solar system, but |
should not call them actual in the way the earth itself is so.”

Frege then seems to recognize three sorts of things: (1) material
objects in the external world, (2) ideas in a particular consciousness,
and (3) objective abstract entities like numbers. Just as the natural
sciences examine objects of type (1), so mathematics investigates
objects of type (3). Indeed Frege draws a parallel between the two
kinds of investigation, (1884) Foundations of Arithmetic, § 96, pp.
107e-8e:
“... even the mathematician cannot create things at will, any more than the
geographer can; he too can only disover what is there and give it a name.”
In his later article on ‘Thoughts’, Frege develops further this theory
of a world or realm of abstract entities. As the title indicates, he is
here concerned not with numbers, but with what he calls ‘thoughts’.
He takes a thought to be the content which is expressed by a sen-
tence, and, as in the case of numbers, argues that thoughts cannot be
(subjective) ideas, because, ( 1918) Thoughts, p. 16:
“.. other people can assent to the thought I express in the Pythagorean theorem
justasldo...” ‘
Frege draws the following conclusion (op. cit. pp- 17-18):

“So the result seems to be: thoughts are neither things in the external world nor
ideas. - :

A third realm must be recognized. Anything belonging to this realm has it in
common with ideas that it cannot be perceived by the senses, but has it in common
with things that it does not need an owner so as to belong to the contents of his
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consciousness. Thus for example the thought we have expressed in the Py!ha-
gorean theorem is timelessly true, true independently of whether anyone takes it to
be true. It needs no owner. It is not true only fron.l the time wh'en itis dncovered'i
just as a planet, even before anyone saw it, was in interaction with other planets.

Here Frege only explicitly mentions thought.s, but- it seems reason-
able to presume that numbers too would be mhab’xtants of his third
realm. This realm has obvious similarities to Plato’s world pf forms,
and it may strike many as being unpleas'antly' mysterious and
metaphysical. Is it not possible to dispense with this realm using the
reductionist strategy? This is what we must next conmder: .
Our hypothetical reductionist is prepared to admit material
objects in space and time, including plants, animals and human
beings. He is also perhaps prepared to admit subjective ideas in an
individual consciousness; but he is very reluctant to allow the exis-
tence of abstract entities such as numbers. In the language of modern
logic, he therefore holds that in the quantifiers (V’f) (fo; all x)
and(3x) (there is an x), x should range only over material objects (or
possibly psychological objects such as thoughts), but not over ab-
stract objects. The question is now whether we can develqp qrdlnary
arithmetic and theory of numbers if we accept this prescription.
Certainly some numerical statements can still be made. Perhaps
the easiest way to do so is to introduce the numerical quantifiers

3x),3 x), @ x),...,3x),..where (?x)P(x) is supposed to mean:
‘there are 'exafctly n x such that P(x)’. These quantifiers can be de-
fined as follows:

@X)P() = ger™ (3x)P(x)

GX)P(x) = ger Ax)(P(x) A (V))(P() > y = x) )

@X)P(x) = der @x)AVNP(x) AP() A x5= y

i A(VIPE) > z=xvz =) ))

They enable us to make numerical statements such as ‘There are five
apples on that table’ which becomes simply: (?x)P(x) where P(x) =
def X is an apple on that table. .

We can also use the numerical quantifiers to express simple

. arithmetical equations such as 5 + 7 = 12. In fact this becomes:

( @X)P(x)v (3)QV) 4~ @E2)(P() AQ(2) ) )
= @w)(P(w) v Q(w) )
However, as soon as we go on to even quite simple statements of
the theory of numbers, the picture changes. Consider, for exan}ple,
the statement that there is a prime number greater than any given
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number. If we write: ‘m is a prime number’, as Pr(m), this becomes
(Ym)@m)(Pr(m) A m >n) — (*)
However this involves quantification over numbers which, since they
are abstract entities, our reductionist cannot allow. Moreover there
seems to be no way, using some device such as numerical quantifiers,
of reducing (*) to a form in which there is only quantification over
material objects. The same applies to the principle of mathematical
induction:
(P(0) v (Vn) (P(n) = P(n+1) ) )— (Yn)P(n)
Here again we have a quantification over numbers which cannot be
eliminated.

Thus if we take our reductionist’s prescriptions seriously, we would
be forced to abandon virtually all higher number theory, and most of
Peano arithmetic. We would not be able to get much beyond simple
numerical equations. So, if we are going to accept at least a reason-
able portion of modern mathematics, reductionism will not work,
and we will have to accept a world of abstract entities such as
numbers whether we like it or not. Let us therefore examine this
“third realm™ a little more closely.

Recently Popper has followed Frege in distinguishing three
worlds. The first world is of material objects in space and time; the
second world is of psychological entities — ideas in Frege’s sense; and
the third world is of abstract entities. However, Popper’s account of
the third world differs in an interesting and significant fashion from
Frege’s and Plato’s. As Popper himself says, (1972) Objective
Knowledge, Ch. 3, p. 122:

*Plato’s third world was divine; it was unchanging and, of course, true. Thus there
is a big gap between his and my third world; my third world is man-made and
changing. It contains not only true theories but also false ones, and especially open
problems, conjectures, and refutations.” .
So Popper holds that the world of abstract entities is man-made and
changes in time, while both Frege and Plato hold that this world
exists in a timeless sense independently of human beings. Frege
indeed explicitly criticizes the view that numbers might change with
time. He writes, (1884) Foundations of Arithmetic, Introduction, p.
VIe:
*... astronomers would hestitate to draw any conclusions about the distant past, for
fear of being charged with anachronism, — with reckoning twice two as four
regardless of the fact that our idea of number is a product of evolution and has a
history behind it, It might be doubted whether by that time it had progressed so
far, How could they profess to know that the proposition 2 X 2 = 4 was already in
existence in that remote epoch?”

Frege’s argument here is fallacious. Astronomers apply our present
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day concept of number when describing the distant past — but that
does not imply either that the concept of number existed then or that
it is timeless. In the same way some astronomers use the English
language to describe the distant past without implying that English
existed then or that it is timeless.

Of the views so far considered regarding the existence of numbers
and other abstract entities, it seems to me that Popper’s is the most
plausible. I propose to call his view constructive Platonism, because it
is, in a sense, a synthesis of the views of Brouwer on the one hand and
of Frege and Plato on the other. Brouwer held that numbers are the
subjective mental constructions of particular individuals. The claim
that numbers are subjective and mental has, in my view, been dec-
isively refuted by Frege. We are thus led to accept Platonism in so far
as it claims that numbers are objective but yet not material. On the
other hand the traditional Platonic view of numbers as timeless and
existing independently of human beings seems implausible. Brouwer
does seem to be right in holding that numbers are human construc-
tions. They are not however, subjective mental constructions, but
rather objective social constructions. Just as human beings in the
course of their history gradually learnt how to construct material
artefacts such as tools and houses, so they learnt how to construct
non-material artefacts such as numbers. Indeed these non-material
artefacts (numbers) can be used in conjunction with material arte-
facts (tools) to construct further material artefacts (houses).

Although constructive Platonism seems to me the most plausible
theory of abstract entities, it is useless to pretend that it does not
contain problems and difficulties. To begin with abstract entities
such as numbers still appear as strange and mysterious, and more
clarification regarding their nature is needed. Moreover we have to
explain how exactly human beings do construct abstract entities.
Houses are built by adding brick to brick; but how is the number
three constructed?

In addition to these general points, there is a specific difficulty
recently pointed out by Currie who writes, (1978) The Objectivism of
Frege and Popper, Ch. 5, pp. 244-5:

“If a choice is to be made about what is the correct set theoretic structure, it cannot
be made by claiming that there is a unique abstract structure in the third world
which makes our axioms true or false. Popper’s third world is pluralistic in a sense
in which the traditional platonic heaven is not. It is teeming with alternatives:

standard and non-standard models of our theories, intuitionistic arithmetic as well
as its classical rival, logics with all conceivable values, etc.”

The point here is that, on the traditional Platonic view, we can regard
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a mathematical proposition as true if it corresponds to what is
actually the case in the timeless world of forms. But if this world of
forms is a human creation, it must, as Popper explicitly states, con-
tain false theories as well as true ones, and misleading and erroneous
conceptions as well as correct ones. Thus mathematical truth can no
longer be analysed as correspondence with what holds in the Platonic
world of abstract entities, and some other account is needed.

I believe that the problems involved in constructive Platonism can
be overcome, but to investigate this matter further would take us too

far from our present concerns. In the next chapter therefore we will
return to our exposition of Frege’s views.

Chapter 7.
Frege’s Logicism

We have already remarked that, in order to establish his logicist
thesis, Frege has-to give a definition of number in terms of purely
logical notions, and to show that all arithmetical reasoning, parti-
cularly reasoning from »n to n+1, or the principle of mathematical
induction, can be reduced to logical inference. Let us now examine
more closely how he sets about these tasks. '
Frege begins his attempt to define number in (1884) Foundations

of Arithmetic § 55 p. 67¢. He first claims to have established that the
content of a statement of number is an assertion about a concept, and
therefore goes on to define: ‘O belongs to F*, 1 belongs to F’,' e ‘n
belongs to F’, ... where F is an arbitrary concept. His dgﬁmnons,
translated into the notation of modern mathematical logic, are as
follows (op. cit. § 55 p. 56¢):

‘0 belongs to F* = 4ar(Va)~F(a)

‘I belongs to F* = ger (3a)F(a) o (Va)(Vbh) (F(a) AF(b) > a = b)

‘n+1 belongs to F* = e (3a}(F(a) A n belongs to the concept *F(x) A x 5= a’)
It will be seen that these definitions are essentially the same as tho§e
of the numerical quantifiers (oElx), (lax), wees (Elx), ... which we gave in
chapter 6. -
Do these formulae constitute an adequate definitions of number?
Frege answers ‘no’, for the following reasons (op. cit. § 56 p. 68<):
“... we can never — to take a crude example — decide by means of our deﬁnl.uons
whether any concept has the number JULIUS CAESAR belonging to it, or
whether that same familiar conqueror of Gaul is a number or not. Moreover we
cannot by the aid of our suggested definitions prove that, if the number a belongs

to the concept F and the number b belongs to the same concept, then necessarily a
= b

Our earlier discussion of the numerical quantifiers should, I hope,
help to clarify Frege’s point here. We considered a reductionist
programme for eliminating abstract entities, and expressing
arithmetical propositions by the numerical quantifiers (3x) where x
ranges only over material (and possibly psychological) entities. We
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argued that such a reductionist programme does not work, and that
to obtain the usual mathematical theory of numbers we need to
quantify over numbers, and treat numbers as objects. This is essen-
tially what Frege is saying here. His definitions of ‘0 belongs to F*, ‘1
belongs to F’, ..., ‘n belongs to F’, ... do not allow us to treat numbers
as objects, and so are inadequate for arithmetic.

But how then we introduce numbers as objects, since we cannot
exhibit numbers in sense-perception (or Kantian intuition)? Frege
states that we can do so by laying down identity criteria for numbers
Le. by defining what is meant by saying that two numbers are equal,
(1884) Foundations of Arithmetic § 62 p. 72¢:

“In our present case, we have to define the sense of the proposition

“the number which belongs to the concept F is the same as that which belongs to
the concept G™;...”

To illustrate his procedure, Frege considers the problem of defining:
‘the direction of the line a’. We begin by defining:

the direction of line a = the direction of line b if and only if 4.rline
ais parallel to line b (a # b)

The notion of parallel lines, Frege thinks, must be given originally
in intuition like “everything geometrical” (op. cit. § 64 p.75¢). How-
ever to show that the definition is legitimate, we have to show that it
satisfies the analytic truths about the notion of identity — which
truths Frege takes to be summed up in Leibniz’ Law i.e. eadem sunt,
quorum unum potest substitui alteri salva veritate.? This amounts to
showing that / is an equivalence relation.

Having defined ‘the direction of line a = the direction of line b’,
we now have to define ‘the direction of line a’ (fout court) in order to
be able to decide whether e.g. England is the direction of the earth’s
axis. Frege suggests the following (op. cit. § 68 p. 79¢):

“the direction of line a is the extension of the concept “parallel to line a”;"
(i.e. is the set of all lines parallel to a)
_ Todefine ‘the number which belongs to the concept F’ we proceed
in the same way. We say that two concepts F and G are equal if the
things that fall under them can be put in 1-1 correspondence. Then
we define (op. cit. § 68, pp. 79¢-80¢):

“the Number which belongs to the concept F is the extension of the concept “equal
to the concept F™."

So a number is a set of concepts.
Frege admits that it is somewhat curious to identify a number with
the extension of a concept, and this may lead to strange ways of

! They are the same, one of which can be substituted for the other preserving truth.

46

speaking. Ho“l'eve‘r nothing incqrrect will result, and he doesn’t
regard such objections as very serious.
To show that the notion of 1-1 correspondence does not presup-
ose that of number, Frege gives the following example (op. cit. § 70
pp- 81¢-82°):
“If a waiter wishes to be ceriain of laying exactly as many knives on a table as
plates, he has no need to count either of them; all he has to dois to lay immediately
1o the right of every plate a knife, taking care that every knife on the table lies
immediately to the right of a plate.”
Frege next shows that 1-1 correspondence can be defined in terms of
purely logical notions, and that 1-1 correspondence is an equivalence
relation. This is pretty familiar material nowadays.
Frege next defines (op. cit. § 72 p. 85¢):
“the expression
“nis a Number”
is to mean the same as the expression
“there exists a concept such that » is the Number

LI}

which belongs to it™.
He then goes on to define the individual numbers 0, 1, 2, ..., and the
relations of successor. This he does as follows:
Definition of 0 (op. cit. § 74 p. 87¢)
“Since nothing falls under the concept “not identical with itself”, I define nought
as follows:
0is the Number which belongs to the concept “not identical with itself”.”
Definition of Successor (op. cit. § 76 p. 89¢)
“I now propose to define the relation in which every two adjacent members of the
series of natural numbers stand to each other. The proposition:

“there exists a concept F, and an object falling under it x, such that the Number
which belongs to the concept F is n and the Number which belongs to the concept
‘falling under F but not identical with x" is m”
is to mean the same as

“n follows in the series of natural numbers directly after m".”

Definition of 1 (op. cit. § 77 p. 90¢):
“l is the Number which belongs to the concept “identical with 0",”
It can then be proved that 1 follows in the series of natural numbers
directly after 0.
Frege’s next task is to prove a number of propositions regarding
the relation just defined viz. “n follows in the series of natural

- numbers directly after m” or, briefly, m is a successor of n. Here are

three examples:
(1) “m is a successor of n’ is a 1-1 relation.
(2) Every number except 0 is a successor of a number.
(3) Every number has a successor.
In order to prove (3), Frege has, given a number n, to find a
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concept whose extension has n+ 1 members. In fact he chooses the
concept: “member of the series of natural numbers ending with n”.
But to define this concept, Frege has to define the notions of “series”
and “following in a series”. He remarks that in his Begriffsschrift he
has in fact defined: “y follows x in the ¢-series” in purely logical
terms, and proved some properties of it. The definition amounts to
saying that the relation holds if y has all the g-hereditary properties
possessed by the immediate successors of x. He goes on to say (op. cit.
§ 80 p. 93¢):

“Only by means of this definition of following in a series is it possible to reduce the

argument from » to (n+ 1), which on the face of it is peculiar to mathematics, to the
general laws of logic.”

Frege does not show how this reduction is accomplished, but he does
give a sketch of a proof that every number has a successor. .
What conclusion does Frege draw from all this. He writes as

follows, (1884) Foundations of Arithmetic § , p. 99¢:
“l'hope I may claim in the present work to have made it probable that the laws of
arithmetic are analytic judgements and consequently a priori. Arithmetic thus
becomes simply a development of logic, and every proposition of arithmetic a law
of logic, albeit a derivative one. To apply arithmetic in the physical sciences is to
bring logic to bear on observed facts; calculation becomes deduction. The laws of
number will not, as BAUMANN thinks, need to stand up to practical tests if they
are to be applicable to the external world;...”

It is important to notice that Frege only claims “to have made it
probable that the laws of arithmetic are analytic judgements”. In
effect he has sketched how to define number in terms of purely
logical notions (i.e. for him ‘concept’, ‘identity’, (¥x), etc.), and how
the theorems of arithmetic can be deduced using only logical
principles and without appeal to any special mathematical in-
ferences. However, as he goes on to say, some doubts might remain as
to whether there might be a gap in the chain of proofs — a gap which
could only be filled by appeal to some non-logical principle. (op. cit.
§ 90 p. 102¢):

“1 do not claim to have made the analytic character of arithmetical propositions

more than probable, because it can still always be doubted whether they are

deducible solely from purely logical laws, or whther some other type of premiss is
not involved at some point in their proof without our noticing it.”

In effect Frege has set himself a programme: to write out in full his
definitions and proofs, and thus to establish, beyond doubt. the
analytic character of arithmetic. It was to carry out this programme
that he invented his Begriffsschrifi (Concept Writing) because
ordinary language was not sufficiently precise for the purpose. As he
says (op. cit. § 91, p. 103¢):
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“To minimize these drawbacks, I invented my Begriffsschrift. It is designed to
produce expressions which are shorter and easier to take in, and to be operated likle
a calculus by means of a small number of standard moves so that no step is
permitted which does not conform to the rules which are laid down once and For
all. It is impossible, therefore, for any premiss to creep into a proof without being
noticed.”
Frege spent the next nineteen years carrying out this long apd dif-ﬁ-
cult programme. The results were: Grundgeseize der Arfrhmen_k,
bggrffﬁschriftifch abgeleitet (Fundamental Laws of Arithmetic,
derived using the concept writing), Vol. 1. 1893. Vol. II. 1903. We
shall examine in chapter 12 the fate which overtook this work. In the
next two chapters we shall consider Dedekind’s version of logicism,
and see how it compares with Frege’s.
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Chapter 8. .
Dedekind and Set Theory

Dedekind’s main work on the foundations of arithmetic: Was sind
und was sollen die Zahlen? (literally: what are and what ought to be
the numbers?) was published in 1888, that is four years after Frege’s
Foundations of Arithmetic. However Dedekind worked out his ideas
independently of Frege, and only came across Frege’s book after his
own was completed. In the second edition of “Was sind und was sollen
die Zahlen?' (1893), Dedekind says in the preface (pp. 42-43):
“About a year after the publication of my memoir I became acquainted with G.
Frege’s Grundlagen der Arithmetik, which had already appeared in the year 1884.
However different the view of the essence of number adopted in that work is from
my own, yet it contains, particularly from § 79 on, points of very close contact with
my paper, especially with my definition (44). The agreement, 10 be sure, is not easy
to discover on account of the different form of expression; but the positiveness
with which the author speaks of the logical inference from n to n+1 (page 93,
below) shows plainly that here he stands upon the same ground with me.” .
In a private letter of 1890 quoted by Hao Wang in his interesting
article on The Axiomatization of Arithmetic, Dedekind warns his
correspondent (op. cit. p. 151): .
“Only one must not be put off by his (i.e. Frege’s) somewhat inconvenient ter-
minology.”
Later on we will examine the specific point of similarity between § 79
of Frege’s Grundlagen, and (44) of Dedekind’s Was sind und was
sollen die Zahlen? Let us begin, however, with some rather more
general issues. The main point of similarity with Frege is that
Dedekind also espouses logicism (the view that arithmetic can be
reduced to logic). This is how he puts it in the Preface to the first
edition, (1888) Was sind und was sollen die Zahlen? pp. 31-32:
“In speaking of arithmetic (algebra, analysis) as a part of logic I mean to imply that
1 consider the number-concept entirely independent of the notions or intuitions of
space and time, that I consider it an immediate result from the laws of thought. My
answer to the problem propounded in the title of this paper is, then, briefly this:
numbers are free creations of the human mind; they serve as a means of
apprehending more easily and more sharply the difference of things. It is only

thus acquiring the continuous number-domain that we are prepared accurately to
investigate our notions of space and time by bringing them into relation with this
number-domain created in our mind.”

So Dedekind like Frege rejects the Kantian theory of arithmetic.
However we note at once one difference from Frege. Dedekind has a

sychologistic rather than Platonistic view of logic. He speaks of “the
laws of thought” and of numbers as being “free creations of the
human mind”. Another difference between the two emerges later.
Dedekind regards the notion of class, or set, or, to use his own
terminology, system, as a logical notion. But Frege denies this. In his
preface to (1893) Grundgesetze der Arithmetik Vol. 1. Preface. Furth
Translation. p. 4, Frege writes:

“Herr Dedekind, like myself, is of the opinion that the theory of numbers is a part
of logic; but his work hardly contributes to its confirmation, because the ex-
pressions “system” and “a thing belongs to a thing”, which he uses, are not usual in
logic and are not reduced to acknowledged logical notions.”

For Frege, “concept” and “extension of a concept” are logical
notions, whereas “set”, “class”, “system” are not. Thus Frege’s point
of view leads to higher-order logic and type theory; whereas
Dedekind’s leads to axiomatic set theory.

Another difference is that Frege feels the need for formal logic (his
Begriffsschrift) in order to write out the requisite proofs completely,
whereas Dedekind proceeds informally. Frege himself makes this
point, (1893) Grundgesetze der Arithmetik Vol 1 Preface Furth
Translation p. 4:

“...if we compare Herr Dedekind’s work, Was sind und was sollen die Zahlen?, the
most thoroughgoing work on the foundations of arithmetic that has lately come to
my notice. In much less space it pursues the laws of arithmetic much further than is
done here. To be sure, this brevity is attained only because a great deal is really not
proved at all. ... an inventory of the logical or other laws taken by him as basic is
nowhere to be found and even if it were, there would be no way of telling whether
no others were actually used; for that to be possible the proofs would have to be
not merely indicated but carried out, without gaps.”
We see here, once again, Frege’s obsessive desire to prove beyond
doubt that arithmetic is reducible to logic by exibiting all the axioms
and rules of inference needed, and thereby showing that they are all
logical in character so that no appeal to intuition or empirical con-
siderations is needed. Dedekind, though a logicist, has not the same
over-ruling passion to demonstrate his position conclusively, and is
content with the usual informal mathematical standards of rigour. As
aresult his work has much more mathematical elegance than Frege’s.

‘ il“ldw | Although Dedekind does not use formal logic, the claim that “an
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where to be found” is not altogether true, since, as we shall see,
Dedekind does state some of the basic principles of set theory, which
for him are part of logic. ) . .

Finally Frege has lengthy philosophical discussions of Kant, Mill,
etc., whereas Dedekind sticks for the most part to n.la.thematlcs.
Generally speaking Dedekind is more of a mathematician than a
philosopher. . . .

Let us now begin a more detailed analysis of Dedekind’s (1888)
Was sind und was sollen die Zahlen? As already remarkesi, Dedekind
takes the notion of system as basic, and he introduces it as follows
(op. cit. (2) p. 45):

“It very frequently happens that different things, a, b, ¢, ... for. some reason can be
considered from a common point of view, can be associated in the mind, and we
say that they form a system S; ...”
The elements of psychologism in this passage produced a cl}aractc?r-
istic expostulation from Frege, (1893) Grundgesetze der Arithmetik,
Furth translation, pp. 29-30:
“For an undertaking of this kind to succeed, it is of course necessary that we grasp
precisely the concepts required. This applies panicularl)'l to what the
mathematicians would like to designate by the word “set”. Dedekind uses the word
“system” with very much the same purpose. But despite the explanations in my
Grundlagen four years earlier, a clear insight into the essence of the matter is not to
be found in Dedekind, although he occasionally comes near the mark, - But
other passages wander off again, for example the following (pp. 1-2): “It very
frequently occurs that different things , b, ¢, ..., regarded for some reason from a
common point of view, are put together in the mind; and we say then that they
form a system S.” Here a presentiment of the truth is indeed co.ntamed in }h.e
‘common point of view’; but this ‘regarding, this ‘putting together in the ml.nd ,is
not an objective characteristic. 1 ask, in whose mind? If they are put together in one
mind but not in another, do they form a system then? What is supposed to be put
together in my mind, no doubt must be in my mind: th‘en do_the. t:hlngs ouls;de
myself not form systems? Is a system a subjective figure in .the individual soul? In
that case is the constellation Orion a system? And what are its elements? The stars,
or the molecules, or the atoms?” '
Here we find again Frege’s characteristic arguments against psycho-
logism, but it should be observed that there is nothing mherentl’y
psychologistic about the notion of ‘set’ or ‘system’. To takf: Fl"ege s
own example, the set of stars in Orion is something which exists in the
objective, material world quite independently of human conscious-
ness. . . g

Having introduced the basic notion of system, Ded_ekmd proceeds
in the course of his exposition to state various principles which this
notion satisfies. These principles are not explicitly introduced as
axioms, but they nonetheless bear a close relation to the later axioms
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of set theory. Indeed, as we shall see, Dedekind’s (1888) Was sind und
was sollen die Zahlen? is the principal source for Zermelo’s (1908)
Investigations in the Foundations of Set Theory I, and in fact Zemelo
frequently refers to Dedekind in this paper.

Zemelo takes the notion of set as an undefined notion. He remarks
laconically, (1908), Foundations of Set Theory I § 1,1 p. 201:

“Set theory is concerned with a domain B of individuals, which we shall call simply
objects and among which are the sets.”

Thus Dedekind’s psychologism is avoided.
Zemelo’s Axiom I (Axiom of Extensionality) appears in Dedekind
(1888) Was sind und was sollen die Zahlen? (2) p. 45 as follows:

“The system S is hence the same as the system T, in symbols S = T, when every
element of S is also element of T, and every element of T is also element of S.”

Dedekind remarks in a footnote that, contrary to Kronecker,
whether s is a member of S need not be determined effectively.
Dedekind next introduces the notion of ‘part’ as follows (op. cit. (3)
p- 46):
“Definition. A system A is said to be part of a system S when every element of A is
also element of S.”

This Dedekind writes AS S, which corresponds to the moderm ACS
except for one thing. Nowadays it is standard to distinguish between
ais a member of S (a € S), and A is subset of S (A C S). However

Dedekind conflates these two notions. He writes (op. cit. (3) p. 46):

“Since further every element 5 of a system S by (2) can be itself regarded as a
system, we can hereafter employ the notation s 3 S.”

This amounts to identifying an element s with its unit set {s}. A

Peano was the first to distinguish between a is a member of b (in his
notation a ¢ b), and a is contained in b (in his notation a> b). The
notationse, O are given in his (1889) Arithmetices Principia. However,
despite having a difference in notation, Peano is not yet clear about
the conceptual difference. Indeed the formula 56 of the section
entitled ‘Notations of Logic’ (op. cit. p. 108) states the following: if s
is aclass and k is a subset of s (kD s), then k is a member of s (k e 5)iff
k has one and only one member. Later however, in his (1894)
Nouations de Logique Mathématique, § 31, p. 160, Peano was to
distinguish between an object x, and its unit class (in his notation tx),
and thus to clear the whole matter up.

Dedekind excludes the empty set. He writes (1888) Was sind und
was sollen die Zahlen? (2) pp. 45-6:

“... we intend here for certain reasons wholly to exclude the empty system which

contains no element at all, although for other investigations it may be appropriate
to imagine such a system.”

Dedekind does not explain what “certain reasons” he has in mind.

53

e




o il
TR
Il il bl

|
|
|

[¢

1
|
|

i

i

1

B L
o 10

However the whole matter may be quite closely connected ‘wglh
Dedekind’s failure to distinguish between a ¢ S and./_\(;S. Cpnsndl—r
erable light is shed on this question by Frege’s cr‘mcal r_ewewd_o
Schroder’s Algebra der Logik. Schroder, like Dedekmd, fa'ﬂs tod is-
tinguish between e and C, but, unlike Dedekind, he does !ntr% uce
the empty set. Some difficulties consequently appear which Frege
seeks to resolve.

Frege distinguishes what he calls a dqmain-calculus from a more
general interpretation of class. In a domain-calculus, the domaunsi1 aie
considered as physical objects, and we have ‘only the part-whole
relation. If we take class in the sense of domain, thf:re is no empty
class. As Frege himself puts it, (1895) A Critical Elucidation (_)f‘ Somt*:
Points in E. Schroder’s Vorlesungen iiber die Algebra der L?gll)l_c gs %1915

¢ ass, 1 se 1 ich we have so far used the word, consists of objecis;
a::L‘;S:églzgjeasz(r)‘lsl::rlli:'ih:ncrhty. of them; if so, it must vanish when these ob_]ecés
vanish. If we burn down all the trees of a wood, we thereby burn down the wood.
Thus there can be no empty class.”

In a more general treatment of classes, l?owever, we must c_hs—
tinghuish A is a subset of S (which Frege writes A sub S) from a 1s a
member of S (which he writes a subter S). Freg? remarks in a
footnote (op. cit..p. 94) that his ‘sub’ and ‘subter cor'respc?nd l_o
Peano’s ‘D° and ‘e’. The distinction between the two situations Is
. cit. pp. 92-3):

mac‘l‘{:’\fissiz]{:;g: (t'?fm thisplt?a[ we a)re no longer standing on the basis of the

domain-claculus; for there we had only the part-whole relation, and there ;;\jas r;(;

ground for this distinction bciwe_en }he case]::i‘n‘ere a class contains something

an individual and where it contains it as a class.
Nov‘:n;z(;‘;zz; we have a domain-calculus, an'd, like Schrbdf_:r but
unlike Dedekind, we allow the empty set o. I;)lfﬁcultles fio arise, as
Schrooder himself realized. 1 shall next explain these using mfdem
notation. We have of course 8 C S, for any set S. So sem_ng S -d{ay
y, ... Jay}, We have @ C {_al, ay, ... ,»ap}. But now if \Efe aon'ﬁ
distinguish between C and e, it seems that we must havese z;(l., ; lfz;w
a,). Thus e always “slips in” to any set. I’Sut now we can as]d. o
many members does {a;, a, ... ,an} l}ave‘? _Inl}lltxvely it wouh o
that it should have n members, but, if 8 ;:;llps in as well, perhaps

ay that it should have n+ 1 members. . _ .

Shcl):l slzajlesrn)’sr to me likely that Dedekind was aware of dl’t:ﬁcultlesloidt_hls
kind, and that they constituted his “certain reasons for exct:) lu mi%
the empty set. However, as Frege go,es on‘to ’show, gh;: pr?1 t::: :
resolved by distinguishing between ‘e and ‘C’.e C S for ady Seen,
but it is not true that & € S for any set S. As we have already ;
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Frege uses Schroder’s difficulties here as another argument for tak-
ing ‘concept’ as more basic than ‘set’. But his own successful reso-
lution of the problem seems to me to show that this last stage of the
argument is non-sequitur. Once the distinction between ‘e and £l
had been clearly made (and this was no easy task historically), then
the difficulties concerned with the empty set disappeared.

As the first part of his Axiom II (Axiom of elementary sets),
Zermelo gives, (1908) Foundations of Set Theory I, § 1, 4, p. 202:

“There exists a (fictitious) set, the null ser, 0, that contains no element at all.”
Thus Zermelo, unlike Dedekind, explicitly postulates the empty set.
On the other hand, there is a trace of Dedekind’s influence in that
Zermelo regards the empty set as “a (fictitious) set”. Really, from the
point of view of his set theory, the empty set is no more, or less,
fictious than any other set.

In (1888) Was sind und was sollen die Zahlen? | (8) pp. 46-47,
Dedekind gives a definition of the union of any arbitrary set of sets
A, B, C, ... . This definition corresponds to Zermelo’s Axiom V
(Axiom of the Union) (Zermelo (1908) Foundations of Set Theory
§ 1, 10, p. 203). Dedekind also gives a definition of the intersection of
any set of sets A, B, C, ... (op. cit. I (17) pp. 48-49). Zermelo does not
need to introduce a special axiom for this, since the existence of the
intersection follows from his other axioms. Dedekind, unlike Zer-
melo, has to stipulate that the sets A, B, C, ... should have at least one
common element, before he can apply his definition of intersection.

Let us now turn to Dedekind’s treatment of infinite sets, which is
one of the most interesting parts of his monograph. In (1888) Was
sind und was sollen die Zahlen? V (64) p. 63, Dedekind gives his
famous definition of infinite set:

“Definition. A system § is said to be infinite when it is similar to a proper part of

itself...; in the contrary case S is said to be a finire system.”
(‘Similar’ is here used in the sense that two sets are similar if they can
be put in 1-1 correspondence).
Dedekind now goes on to give the following rather curious proof

of the existence of at least one infinite set (op. cit. V (66) p. 64):
“Theorem. There exist infinite systems,

Proof. My own realm of thoughts, i.e., the totality S of all things, which can be
objects of my thought, is infinite. For if s signifies an element of S, then is the
thought &', that s can be object of my thought, itself an element of S.”
The map s — s is now a similarity mapping (i.e. a 1-1 correspon-
dence) of S onto a proper subset of itself, and so $ is infinite.

Dedekind mentions in a footnote that (op. cit. V (66) p. 64):
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A similar consideration is found in § 13 of the Paradoxien des Unendliclen by
Bolzano (Leipzig, 1851).” .
This argument is not very convincing — particularly in the light of the
set-theoretic paradoxes which were discovered later. Hoxyever it 1s
interesting to try to see what is wrong with it. When Dedek}nd quaks
of his realm of thoughts, he clearly means the set of his possible
thoughts, since the set of his actual thoughts was presurpably t:lmte
(at least during his earthly existence). However the notion of ‘pos-
sible thought’ is somewhat obscure, and it is not clear tha't the're <;{re
such things. This is an objection which Russell makes in his dis-
cussion of Dedekind’s argument (1919) Introduction to
Mathematical Philosophy Ch. XIII. The Axiom of Infinity and
Logical Types. pp. 138-140). Russell writes (op. cit. p. 139):. . "
“If the argument is to be upheld, the “ideas” intended must bg Platonic ideas 1.':\:3
up in heaven, for certainly they are not on earth. But then it at once becomes
doubtful whether there are such ideas.” .
But even if we allow “possible thoughts”, there is another'dlfﬁcqlty.
We can presumably have a possible thought of any possible thing.
Thus the cardinal number of the set of possible thoughts must be

greater than or equal to.the cardinal number of the set of possible -

things. But now we are into Cantor’s paradox. Let V = the set of
possible things. Then V should presumably have the greatest car-
dinal number. Butif PV = the powersetof V = the set of all subsets
of V, then by Cantor’s theorem the cardinal number of PV is strictly
greater than the cardinal number of V. . o
Zermelo rejects Dedekind’s proof of the existence of an infinite se;
for essentially the réason just given. He writes, (1908) Foundations o
Set Theory § 1, 13 p. 204 Finte 8: o X
“The “proof” that Dedekind there attempis to give of this principle cannot be

. : ”
satisfactory, since it takes its departure from “the set of gverythmg lgu:ikabl:o;
whereas from our point of view the domain B itself, according to No. 10, does

form a set.” . ' .
Accordingly Zermelo postulates the existence of an infinite set a; (l;;s
Axiom VII (Axiom of Infinity). Nonetheless he says (op. cit. p- )
that this axiom “is essentially due to Dedekind”. His meaning may
be that Dedekind’s failure to give an a priori proof of the existence of
an infinite set showed the need for an axiom postulating the existence

ch aset. : )
Ofls,l;t us call a set which is infinite in Dedekind’s sense, Dedekind-
infinite. Once we have introduced the natural numbers 1,2,3, ... .1, ,,,
and the sets Z, = {1, 2, 3, ... ,n}, we can dcﬁnq as set S to be
ordinary-infinite if for all n, Z,, can be mapped 1-1 into S. We then
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have the theorem that a set S is Dedekind-infinite if and only if it is
ordinary-infinite. This is in fact theorem 159 of Was sind und was
sollen die Zahlen? (XIV p. 105).

The proof that Dedekind-infinite — ordinary-infinite, is elemen-
tary, but the converse in fact needs the Axiom of Choice which
Dedekind assumes implicitly.

Dedekind does however remark (op. cit. XIV (159) p. 106):

“The proof of the converse — however obvious it may appear — is more
complicated.”

and in the very next sentence he makes a tacit appeal to the axiom of
choice:

“If every system Z, is similarly transformable in =, then to every number n
corresponds such a similar transformation a,, of Z, thata,(Z,) 3 =

For each n, Dedekind selects a particular similar transformation ay,
and this requires the axiom of choice. .

The axiom of choice was first explicitly formulated by Zermelo in
his 1904 paper: Proof that every set can be well-ordered — thoughiitis
mentioned in passing by Peano in 1890 and Beppo Levi in 19021, In
Zermelo’s 1908 paper It appears as Axiom VI.

Zermelo’s 1908 paper contains seven axioms for set theory. So far
we have considered the following: Axiom I (Axiom of Exten-
sionality), Axiom II (First part — postulation of existence of the
empty set), Axiom V (Axiom of the union), Axiom VI (Axiom of
Choice), and Axiom VII (Axiom of Infinity). In each case we have
shown some connection between the axiom and Dedekind’s 1888
monograph. For the sake of completeness, let us briefly consider
Zermelo’s remaining axioms i.e. Axiom II (second and third parts),
Axiom III, and Axiom IV.

Axiom IV is the axiom of the power set. In states that to every set
A, there corresponds the power set of A (PA) i.c. the set of all subsets
of A. The principal use of this axiom is in the development of
Cantor’s theory of infinite cardinal numbers. Since Dedekind does
not consider infinite cardinal numbers in his monograph, he has no
need to introduce the concept of power set. Zermelo’s Axioms II and
III are really designed to replace the intuitive so-called Axiom of
Comprehension. This states that given any property there exists the

set of all things which have that property, or, in symbols:
@NVx)(x ey P(x) )—(+)

! For details see A. A. Fraenkel and Y. Bar-Hillel (1958) Foundations of Set Theory.
Ch. 11. § 4 pp. 47-48.
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we shall see in Ch. 12, this axiom leads at once to Ru‘sse.lls
g:radox. Zermelo’s Axiom II (Axiom of Elementary _Subsets) “(:]h't]ih
postulates the empty set, the unit set {a} of any ob“]ect a, a: ; rﬁ
unordered pair set {a,b} of any objects q,b, and his Axiom III‘( xio -
of Separation) are weaker substitutes for the axmrill o
comprehension designed to allow the development of set e;o:y
while avoiding contradiction. It is interesting In this context to
observe that Dedekind does make an explicit appeal to the erronc;l)/us
principle of comprehension. His proof of theorem 60 ( (1888) Was

j ' begins:
sind und was sollen die Zahlen? IV (60) p. 62) : i
“Indeed, if we denote by £ the system of all things possessing the property E..

Since the property E is here arbitrary, Dcdekiqd assgmef1 that g:;f:‘)r}
any property E there is a set of a]l_ things possessing E i.e. the ;xloseu,s
comprehension. This axiom, incidentally, not only leads to Rus s
paradox, but establishes the existence of the empty set — contrary
Dedekind’s earlier assertion. For setting x 7 x fqr P(x) in (*), we
obtain the set of all x’s such that x 7= x (X(x % x) ) Le. the empty scll;
So far then we have described the set-theoretic frameworkbfl)
Dedekind’s monograph, and shown that this bears a remarka ){
close relationship to later axiomatic set theory. We must nelzc
examine how Dedekind develops arithmetic within this framework.
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Chapter 9.
Dedekind’s Development of Arithmetic

It will be recalled that Dedekind endorsed Frege’s contention that
the inference from n to n + 1 is logical in character. What this claim
means can perhaps be most easily seen within Dedekind’s
framework. In fact it amounts to this: the principle of mathematical
(or complete) induction is a provable theorem of set theory once
natural numbers have been defined in terms of sets.

Dedekind does not, however, proceed directly to a definition of
natural number. His method is first to produce what might be
considered as a set-theoretic generalisation of the sequence of
natural numbers. He then proves, as a theorem, a corresponding
generalisation of the principle of mathematical induction. The
ordinary principle of mathematical induction then follows as a
special case once natural numbers have been defined.

To see the motivation for Dedekind’s definitions, let us consider
the set N of natural numbers = {1,2,3,..,n ..} where, following
Dedekind, we will take the sequence as beginning with 1. With each
number n, we can associate its successor n’ = n+ 1. To generalize, let
us take any arbitrary set S. Instead of the successor operation n—n’,
we can take any abritrary 1-1 transformation (¢ say) of S into itself. If
aeS,wewrite ¢ (a) = @', and if ACS, $(A) = A’. Now in the case of
natural numbers, we have N’ CN. Let us therefore define a chain K
(= Kette) to be a subset of S such that K’ C K. (Dedekind (1888) Was
sind und was sollen die Zahlen? 1V Definition (37) p. 56). However N
is (intuitively) the smallest chain which contains the number 1.
Analogously therefore we define the chain of A (written Ag), where A
is any subset of S, to be the intersection of all chains containing A.
(Dedekind op. cit. IV Definition (44) pp. 57-58).

We have already quoted a passage (Dedekind op. cit. p. 42), in
which Dedekind points out an analogy between his definition (44)
and § 79 of Frege’s Grundlagen der Arithmetik. In that section, Frege
gives his definition of “y follows in the g-series after x”. Corre-
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spondingly Dedekind’s Ag can be coqsidered as “‘the @-series begin-
ning with 'A”. Both Frege and Dedekind are trying to abstzact from
the sequence of natural numbers to produce a more general notion of
“@-sequence”. .
Dedekind uses his notion of “the chain of A” (A,) to prove hvxs
generalisation of the principle of mathematical ind_uction. This is in
fact the following theorem, Dedekind (1888) Was sind und was sollen
1 ? . 60:
die i%é'l;‘g’l::e.orle}r,n gzgnl:plele induction. In order to show that the chain Ay is part of
any system = — be this latter part of S or not — it is sufficient to show,
p.that A3 %, and o
o. that the transformation of every common element of Ag and Z is likewise
element of 2.” £ TV (60) b. 61)
. Cit. .61):
e E‘l:ll‘ile‘ ;ferxﬁféslggg’em, as wil& be)st?own later, forms the scie{niﬁc basis for the
form of demonstration known by the name of complete induction (the inference

fromnton + 1);.." ) )
Ded::kind uses theorem 59 to justify both proofs by induction, and

definitions by induction. . _ o _
Frege’s reduction of mathematical induction to logical inference is

similar, except, for Dedekind’s set theory, we must substitute Frege’s

higher-order logic. - bor. H
Let us now consider Dedekind’s definition of natural number. He
begins (op. cit. VI (71) p. 67) by defining a sz:mply infinite system. In
fact N is said to be simply infinite if there exists: ' N
“a transformation ¢ of N and an element 1 which satisfy the following conditions
a,B. vy, 8
a. N3N
B.N=1I, o
y. The element 1 is not contained in N’
8. The transformation g is similar.” 68
Dedekind continues (op. cit. VI (73) p. 68): '
“Definition. If in the consideration of a simply infinite system N set in orfief bya
transformation ¢ we entirely neglect the special character of the elements; simply
retaining their distinguisability and taking into account only the Felanon to one
another in which they are placed by the ordersetting transformation @, then ar;
these elements called natural numbers or ordinal numbers or §lmply n'umbers, an
the base element 1 is called the base-number of the number-series N. With n?fergncg
1o this freeing the elements from every other content (abstraction) we are )ustnﬁeh
in calling numbers a free creation of the human mind. The relations or laws whic
are derived entirely from the conditions «, B, v, 3 in (71) and therefore are alwags
the same in all ordered simply infinite systems, whatever names may happen to be
given to the individual elements ... form the first object of the science of numbers or
arithmetic.” . - it
It will be seen that Dedekind does not give a completgly explici
definition of natural number; rather he gives a set theoretic structure
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which has the essential properties of the natural numbers, and then
obtains the natural numbers by a mental abstraction. This in his view
makes the natural numbers “a free creation of the human mind”.
Dedekind had adopted exactly the same procedure when introduc-
ing real numbers. He first defines a cut in the rational numbers, and

- then goes from cut to real number by mental abstraction. Russell

called this procedure ‘the method of “postulating” ’, and ridiculed it
in the following famous passage, (1919) Introduction to
Mathematical Philosophy Ch. VII p. 71:
“The method of “postulating” what we want has many advantages; they are the
same as the advantages of theft over honest toil.! Let us leave them to others and
proceed with our honest toil.”

Russell’s “honest toil” consists of giving explicit definitions in
terms of set. Thus, for example, a real number could be defined as the
set of rationals which constitute the lower half of the corresponding
cut. The number 1 could be defined as the set of all sets which are
similar to some particular unit set, and so on. As we have seen, Frege
did give such definitions in terms of the notions “concept” and
“extension of a concept. However Frege’s definitions are easily
reformulated in terms of sets.

Frege, as we have seen, states some principles in (1884)
Foundations of Arithmetic § 78 pp. 91¢-92¢ which are analogous to
Dedekind’s conditions «, B, vy, 8. For example, Frege states that ‘m is
a successor of »’ is a 1-1 relation, which corresponds to Dedekind’s
condition §, and also that every number except 0 is a successor of a
number, which contains Dedekind’s condition y (with O replacing 1,
since Frege begins the sequence of natural numbers with 0). How-
ever the logical position of these principles in Frege’s account is
rather different. Frege has explicitly defined natural number, suc-
cessor, 0, 1; and so the principles involving these become pro-

' positions which he has to prove. If we adopted Russell’s suggestion of

defining numbers in terms of sets, we could then prove that the
natural numbers are a simply infinite system — thereby, in a sense,
integrating the approaches of Frege and Dedekind.

Once Dedekind has introduced natural numbers, the principle of
mathematical induction for such numbers follows immediately from

- his more general theorem 59 (theorem of complete induction).

Dedekind states this result as theorem 80 (op. cit. VI p. 69).
The next section (VII) of the monograph is concerned with the
relations of greater and less as applied to natural numbers. Dedekind

! This incidentally was written when Russell was in prison.
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1
has of course to define these notions in set-theoretic terms which he-
es as follows (op. cit. VII (89) p. 73): )
i “The number n(r ispsuid to be less than the number n and at the same time n greater
than m, in symbols
m<n,n>m
when the condition
ny3 my
is fulfilled, ...” ) ] )
So m<n, if the set of n and its successors is contained in the si_t of:g
+ 1 and its successors. Dedekind goes on in the rest of the s;lc 10:11113
demonstrate the fundamental order properties of the natural nu
ers on the basis of this definition. . -
The next section (VIII) of the _monqgraph aPp]tcs thefne::vly 1rts
troduced order-concepts to a consideration of finite and infinite pvam
of the number-series. The main result is the following (op. cit.
. 83): . o .
(123“) pany gart T of the number-series N is finite or simply infinite, according as a
greatest number exists or does not exist in T.“. ' ol .
Dcdcekind’s next task is to introduce addition (m + n), multll;ll_lcaglorﬁll
(m.n), and involution (a") of natural nqmbers. He does t 13 . t{1 2
method which is original to him but has since bccorpe st?ndar ",res !
is the method of definition by inducu‘on.. lDedekmd irst gllies .
general theorem which justifies such def’u']mons,.and then ap}‘)!e o
in turn to addition, multiplication, Fmd .mvolutlon. If we giof s
specific definitions first, however, it fvﬂ‘l m;tke the‘ sen;;etion the
general theorem clearer. Addition, multiplication, and involu
defined successively by induction as follows:
it ceit. XTI (135) p. 97) . N
Add‘l‘m::e(s?igl of the nur(nbcrs rg, n ... is completely determined by the conditions
I.m+1=m ‘
HL.m +n = (m+ n)’

We are here assuming that the successor n’ Qf any nu_r]lbe;_' nis gl\f'_le:é
and are defining m + n in terms of this notion. The idea is to de
first m + 1, then m + 2, and so on until we reach m + n.

iplication (op. cit. XII (147) p. 101) _ K
Mu{{.lpl[he produc(l oIf?the numbers m, n ... is completely determined by the conditions

I.ml=m

IHL.mn" =mn+m” . .
Here we define mn using the notion of successor, and that ofm +
which we suppose introduced by the preceding definition.
Involution (op. cit. XIII (155) p. 104) I

“... this nOliEn is completely determined by the conditions
ILa' =a
Il a" = a.a" = a"a
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In order to justify these definitions, it is necessary to abstract their
general form, and then show that such aschema defines one and only
one function. This is the essential content of Dedekind’s theorem
(126) (op. cit. IX pp. 85-86):

“126. Theorem of the definition by indu

ction. If there is given an arbitrary (similar
or dissimilar) transformation 8 of a system £ in itself, and besides a determinate

element « in @, then there exists one and only one transformation ¥ of the
number-series N, which satisfies the conditions
L¥(N)3Q
ILY()) = w
I Y(n") = 0(n), where n represents every number.”
Dedekind proves this theorem using the principle of mathematical
induction which he has already established. There is however an
interesting difference between his theorems regarding complete in-
duction, and his theorem regarding definition by induction. This is
discussed in a remark (op. cit. (130) pp. 88-90).

Dedekind, as we have seen, proved a generalized theorem of
complete induction (his theorem) 59)) which applied to any A, If we
specialize to the case N = lp, we get the ordinary principle of
complete (or mathematical) induction (his theorem (80)). The
theorem of the definition by induction (no. 126) is given only for the
ordinary number-series N. Dedekind’s remark is that we cannot
generalize this theorem to arbitrary chains. The difficulty is that the
conditions (II) and (I1I) of theorem (126) may, in the case of an
arbitrary chain, be inconsistent. Dedekind gives the following simple
example to illustrate this possibility. Let @ = {«, B, v} where a, B,y
are all different. Let 0 be the cyclic transformation

8(e) = B, 0(B) = v, 0(y) = a.

Now instead of N, let us take an arbitrary set S = {a, b} where
a7 b. Let us define a transformation on S by
a=bh b =aq
sothata, = b, = S Let us try to define a transformation  on $ using
the schema of theorem (126). We get
IL Y(a) = «
IL (') = 04(n) where n e S.
But these are inconsistent, since 11 gives

U@) = Y(b) = By(a) = (o) = p
and hence

YB) = 04(b) = () = v.
But y(»") = Y(a), so that Y(a) = « = Y — a contradiction. The
difficulty here is that the general notion of chain includes cyclic
chains for which the procedure of definition by induction breaks

£
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down. Dedekind does remark however that, even in the general case,
if definition by induction defines a transformation at all, then that
transformation is unique.

Dedekind’s treatment of definition by induction is both original
and of the highest importance. It can be considered as a forerunner
of recursive function theory. Having defined addition, multiplication
and involution by induction, Dedekind in each case proves the basic
properties of these operations from his definition. Thus he proves the
laws of commutativity and associativity first for addition and then for
multiplication. He shows that multiplication is distributive with
respect to addition, and demonstrates the laws: am*n = aman, (a™)"
= amn, and (ab)" = anbn. The proofs are carried out in all cases by
using the ordinary principle of mathematical (or complete) induc-
tion.

As well as his treatment of addition, multiplication and involution,
Dedekind gives another application of his general theorem (126) of
the definition by induction. We will conclude the present chapter
with a brief mention of this matter.

In section X, Dedekind proves two theorems (op. cit. p. 92):

“132. Theorem. All simply infinite systems are similar to the number-series N

and consequently ... also to one another.” (op. cit. p. 93) )

“133. Theorem. Every system which is similar to a simply infinite system ... is
simply infinite.”

From these two results, Dedekind draws the folowing conclusion (ep. cit. (134) pp.
95-96): ‘

“B))" the two preceding theorems (132), (133) ... every theorem in which we leave
entirely out of consideration the special character of the elements # and discuss
only such notions as arise from the arrangement @, possesses perfectly general
validity for every other simply infinite system £ set in order by a transformation 8
and its elements v, ... . By these remarks, as I believe, the definition of the notion of
number given in (73) is fully justified.”

In other words, Dedekind believes that the propositions («), (), (v),
(8) which define the notion of simply infinite system give an
adequate characterization of the natural numbers. This optimistic
conclusion has been undermined by some results of twentieth cen-
tury logic.

Let us suppose that Dedekind’s propositions (), (B), (¥), (d) are
taken as axioms in some suitable formal system e.g. some formalized
set theory. Call the resulting system D. Now one model of D will be
the natural numbers in the ordinary intuitive sense (N say). Call any
model isomorphic to N a standard model of D. Dedekind’s theorems
(132) and (133) appear to imply that D has only standard models.
However, by a result of Skolem’s, D (and indeed any formal system
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for arithmetic which has a standard model) has also non-standard
models. A full discussion of this puzzling situation is to be found in
‘Bell and Machover (1977) A Course in Mathematical LogicCh.7§ 2
pp-3 18-3%4 to which the reader is referred. We will content ourselves
with quoting some of Bell and Machover’s concluding remarks (op.
cit, p. 324):
“The informa'l cha‘racterization of the natural numbers works (or seems to work)
only because it tacitly assumes that the notion ser of natural numbers is interpreted
correctly, as referring to all subsets of N. Thus it is not an absolure characterization
but only relative to the notion of power set (set of all subsets) of a (possibly infinite)

set. This latter notion cannot be characterized in a purely formal way; besides it is
considerably more problematic than the notion of natural number.”

The essential point seems to be this. Dedekind tries to characterize
natural numbers using the notions of set theory; but these set-

Fheoretic notions themselves cannot be unambiguously characterized
in a formal way.
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Chapter 10. .
Peano’s Axioms.

General Comparison of Frege,

Dedekind, and Peano

In his interesting article already cited, Wang remarks that, (1957)

The Axiomatization of Arithmetic p. 149: o
“Historically, Peano borrowed his axioms from Dedekind...

In a way this is true, but it is unfair to Peano in as much as it sugugests
that Peano contributed nothing to the subject. In fact, as we sha fsv:e:,
Peano had a different position on the foundations of arithmetic from
both Dedekind and Frege. _

In his Arithmetices principia nova methodo exposita of 1889, Peano

i Kennedy translation p. 103):

Says“i? :Eeeg?'gzgai? z(lrilhmctic lyused the bookpof H. Grassmann, Lehrb;cg df{r
Arithmetik (Berlin, 1861). Also quite useful to me was the _recem work by h
Dedekind, Was sind und was sollen die Zahlen (Braunschweig, 183§), ‘;n“ whic
questions pertaining to the foundations of numbers are acutely examine h

Thus Dedekind certainly influenced Peano. How then dl_d_t e ti\;r(o

men differ? The main point is that Peano was not a,loglcxst. L t;

Dedekind, but unlike Frege, Peano did adn_-ul ‘class’ as a loglclad

notion (op. cit. p. 107). However he did not think that x}umbe‘r cou i

be defined in terms of logical notions. ‘For Peano, anthmencdcgnt

tained a number of primitive notions which could not be defined, ut
which could be characterized axiomatically. Thus I th}nk itis co_rrec
to speak of Peano’s axioms rather than Dedeklr_lds axlpmhs, fct)cl)'

Dedekind was not trying to axiomatize _arlthmeuc, but rather )

define arithmetical notions in terms of log@l ones. Another way 0f

putting it is to say that Peano is not a logicist, but a forerunner o

ilbert’s later formalism. _

Hli’be‘:no is himself quite clear on this point and writes as follows (op.

- E'.Fl'}c(i%)a.rithmetical signs which may be expressed by using others alonglwnhﬂfigsj
of logic represent the ideas we can d_cﬁne. Thus 1 h_ave deﬁned_lf:crg ;g;n!;um);)cr
except the four which are contained in the explanations of‘§bl.[ st g
(positive integer), unity, successor, and equality (for num ers) : h‘ s g
believe, these cannot be reduced further, then the ideas expressed by them may
be defined by ideas already supposed to be known.
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Propositions which are deduced from others by the operations of logic are
theorems; those for which this is not true I have called axioms. There are nine

axioms here (§ 1), and they express fundamental properties of the undefined
signs.”

Another difference between Dedekind and Peano is that Dedekind
was a logicist, but didn’t use formal logic; while Peano was not a
logicist, but did use formal logic. Indeed Peano developed a system
of formal logic in order to deduce theorems from axioms. His system,
as a whole, is not as good as that of Frege's Begriffsschrift; but
Peano’s notation proved more acceptable than Frege’s and is the
ancestor of most modern systems.

Here is the passage in which Peano introduces his axioms, (1889)
Arithmetices principia, Kennedy translation, p. 113:

“Explanations

The sign N means number (positive integer); | means unity; a + | means the
successor of a, ora plus 1; and = means is equal to (this must be considered as a
new sign, although it has the appearance of a sign of logic).

Axioms

1.

2.aeN.D.a=a.

33 abeN.D:ia=bp. = p=q.

4. a,b,ceN.D a=bb=cD.a=c
S.a=b.beN: D . aeN,

6. aeN.D.a+ leN. :

1. abeN.Dia=b=.a+1=p+ 1.

8. aeN.D.a+1-=1.

9. keK. lek x ek: Dy x4+ lek::D . NDFL

(Here k e K means & is a class, and N D % means N is a subset of k - D.G)

Definitions
IO.2=l+l;3=2+];4=3+l;ctc.“

Here Axioms 2, 3, 4, 5 are axioms of equality, so that Axioms 1,6, 7, 8,
9 by themselves are often referred to as the Peano Axioms. If we write
them out informally, they become:

(P1) 1is a number.
(P2) The successor of any number is a number.

(P3) Two numbers are equal if and only if their successors are
equal.

(P4) 11is not the successor of any number.
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(P5) Letk be any class. If 1 € k, and for any number n, ne k —
n + 1ek, then k contains the class of all numbe_rs. .
( (P5) is just the principle of mathematical (or complete) induction
stated in terms of classes rather than properties). .

We can see that these correspond very closely to Dedekind’s con-
ditions (x), (B), (v), (3) which we quoted garli.er (Ch. 9 p.60 above).
Peano’s (P1) is in effect stated by Dedekind in his prqamblc? to the
conditions (a), (B), (Y), (). (P2), (P3), and (P4) are just dlfﬂ?rer:t
formulations of Dedekind’s («), (8), and’ (y) respectively. Dedekind’s
(B) i.e. N = 1, leads in the light of his Theorem 59. (’I‘heqremfof
complete induction), to the principle of complete induction for
natural numbers, given by Dedekind as theorem 80. ‘Tl'lus' (B)
corresponds to Peano’s (P5). So much then fo§ the ‘smnlarlmes
between Peano and Dedekind. We must next .mvestlgate more
closely the question of whether Peano’s work contains a new point of

ew. .

VII have already remarked on what seem to me two key differences
between Dedekind and Peano. First of all Dedekind seeks to define
natural number in set-theoretic terms, whereas Peano reg?rds
natural number as an undefined notion whigh is gharactenzed
axiomatically. Secondly Peano tries to develop arithmetic as a formal
system. Dedekind on the other hand has an mfor{naI approach.lgg1

It is interesting to note, however, that Peano in a paper qf
denies that there is any significant difference between .hls own
approach and Dedekind’s. He writes, (1891) Sul concetto di numero
P 88"‘Between what goes before, and what DEDEKIND says, there is an apparent

contradiction, which it is necessary immediately to remove. Here number is not

defined, but its fundamental properties are stated. Instead DEDEI'(IND df:{ines

numbel:. and calls number precisely that which satisfies the aforesaid conditions.
vidently the two things coincide.” ] o

ItEis not iowever‘sogevident to me that the two things coincide. As
we have already argued, Dedekind’s approac.h. leads naturally tg
axiomatic set theory, and to an explicit definition of r,lumber anh
development of number theory within set theory. Peano’s approach,
on the other hand, leads naturally to the kind of forma’ll arithmetics
considered later by Hilbert and his school. In Peano’s system, c;ve
have only to replace classes by predicates to get a typical Ist-or er
formal arithmetic. There is no natural route from Peano’s
Arithmetices principia to axiomatic set theory, nor, cqnversely, is
there any natural route from Dedekind’s (1888) Was sind und wgs
sollen die Zahlen? to 1st-order formal arithmetics. If we look at the
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respective positions of Peano and Dedekind in terms of their his-
torical development, we see that there really is a difference between
them. ‘

Peano can best be considered as a forerunner of the formalist
philosophy of mathematics. His Arithmetices principia of 1889 was
just one of the first stages in a project for presenting the whole of
mathematics as a vast formal system. This project was in fact carried
out by Peano and his followers, and the result was the Formulaire de
Mathématiques of which the first edition appeared in 1895 and the
last in 1908. This remarkable work is written almost entirely in
formulas and develops in turn: I. Mathematical Logic, II
Arithmetic, III. Algebra, IV. Geometry, V. Limits, VL. Differential
Calculus, VIL Integral Calculus, and VIIL Theory of Curves. An
appendix contains a few diagrams to illustrate section VIII, but this is
clearly a reluctant concession since the actual treatment of section
VIII involves only formulas and logical deductions.

Hilbert was undoubtedly influenced by Peano in adopting the
formalist philosophy of mathematics, but, with Hilbert and his
school, there is a shift of interest away from the construction of
formal systems to the investigation of the metamathetical properties
of such systems. In particular of course, Hilbert and his followers
tried, for various formal systems, to obtain metamathematical con-
sistency proofs which used only the methods of so-called ‘finitary’
arithmetic. It is interesting to note that we find the faint beginnings of
this metamathematical interest in Peano.

There is no metamathematics in Peano’s (1889) Arithmetices
principia, but in his (1891) paper ‘Sul concetto di numero’, he givesa
metamathematical investigation of the independence of the five
‘Peano’ axioms. This is an interesting passage, and it is worth quoting
a few parts of it.

Peano begins by stating his five postulates in much the same form
as we have given earlier (pp. 61-68 (P1) — (P5)). He then remarks,
(1891) *Sul concetto di numero’ p. 87:

"It is easy to see that these conditions are independent.” )

An investigation of independence then follows on pages 87-88. Peano
uses the method of models. To show that a particular postulate P say
is independent of a group G say of the others, Peano devises a model
M in which P is false, but the postulates of G are all true. Without
giving the full investigations; we will illustrate his procedure by a
couple of examples:

) Proof that (P5) is independent of (P1), (P2 ), (P3), and (P4) (op. cit.
p.-87)
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it ient t
“To form a class of entities which satisfy 1, 2,3 and 4, but nl(:l Zoiildllsus;.lnffgg anz
add to the system N another system of entities which sallsfylt] e.ma G arihs
4; thus the class formed by the positive mlegc_rs N, and bx t i i {heg:maginary o
D;- the form i + N, thatis those which are obtal.lrlcd by adtf;ng ;J b A
an arbitrary positive integer, satisfy the conditions preceding 3,

(ii) Proof that (P4) is independent of (P1), (P2), (P3), and (P5) (op. cit.

i ts of
P 82’)[‘0 see that 4 is not even a consequence of 1,2, 3 and 5: let us ?on51de1; tl:x:\;?:; s"c:e
the equation x® = 1; let us call first root (or 1) the imaginary roo

fab
smallest argument (2m/n); and let us call successor of a root ilh; pé(::t;gtotl)beiné
the first root; the conditions 1, 2,3 and 5 are verified, but. not‘ , the R0 R
also the successor of the nth. The same example can bze g’wler:]:{.pop
the names the hours; one o’clock is the successor of 12 o'clock.

the
Such investigations of independence ?rﬁ very heslgililérl;lzca/\lifﬁougﬁ
i i i f each of the variou i
bring to light the precise role o ) 9 st o
1 i i dence of the axioms, he -
Peano investigates the indepen - : el
i e the question of con y.
far as I have been able to discover, rais _ : Y-
It was left to Hilbert and his school to raise the question of consis
[ igate it in detail. :
tency, and to investigate it in de : 3 "
W); can conveniently close this chapter by giving a ta]:l;t‘;:1 :ﬁnd
sums up the similarities and differences between Frege, ;

and Peano.

. Formal
s =l hologism Class a ;
Logicist ;;S)fogic 2 Logical Notion  Logic
Yes
Frege Yes oo sgs No
Dedekind Yes Yes Yes Yes
Peano No ~
Philosophical Discussion Ancestor of the following ideas
: 1
Type Theory (Russell')
Frege A good deal A);Ii)omalic Set Theory (Zermelo)
Dedekind tltt}z Formal Arithmetic (Hilbert)
Peano 1

ica i i Peano’s
! Russell and Whitehead's Principia Ma!h:'zmanca‘ is allsolln[?xtzn;:;lgel?y
notation and formalism, though its philosophical position 1s close
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Chapter 11.
Frege’s Begriffsschrift

Frege’s Begriffsschrift of 1879 contains an axiomatic-dedeuctive
presentation of the propositional calculus and the predicate calculus.
Frege’s systems are complete — though he did not prove this; and
there is little in his treatment that can be faulted from a modern point
of view, except for his notation which we will consider later.
Frege gives the following reason for setting up logic in an
axiomatic-deductive fashion, (1879) Begriffsschrift §13, p. 136:
“Because we cannot enumerate all of the boundless number of laws that can be

established, we can attain completeness only by a search for those which,
potentially, imply all the others.”

This passage is Interesting because Frege implies that his system is
indeed complete, though he does not attempt a precise definition and
proof of this. Frege calls the set of those laws which potentially imply

all the others the kernel of his system, and he goes on to describe it as
follows (op. cit. § 13 p. 136):
“Nine propositions form the kernel of the following presentation. Three of these —
formulas 1, 2, and 8 — require for their expression (except for the letters), only the
symbol of conditionality. Three — formulas 28, 31, and 41 — contain in addition
the symbol for negation. Two — formulas 52 and 54 — contain the symbol for

identity of content; and in one — formula 58 — the concavity in the content stroke
is used.”

Frege’s “concavity in the content stroke™ is the universal quantifier.
Frege’s “kernel” consists of the axioms of his logic. We will now

write them out, changing Frege’s symbols for connectives, quantifi-

ers, and identity into the ones used in this book (see Appendix I On

Notation), but retaining the letters used by Frege.

Axioms containing only —

) a— (- a

(2) (c—>(b-—>a) )—-)((c—>b)—>(c——) a))
(&) (d— b-a)y—- (- (d— a))
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Axioms containing both — and -

28) b—>a)—> (—ma— —b) .
(3 l) —ad—a

(41) a— —a

Axioms of identity
42) (c = d)— (fle) > fd))
54) c=c

Axiom of the Universal Quantifier

(58) (Va)fia) —=fc)

tates (op. cit. § 1 p. 111) that the letters are to be gonsxdered
asf';erig:bsles. N(oxs in man)[') modern presentations, the Axiom of the
Universal Quantifier would be stated as
Vx)f(x)— _
wher(e it){x(as) to ggyz‘urther specified that no free occurrences of x in
f(x) lie within the scope of a quantifier (Vy) or (3y). This quahﬁc;tlon
is added to avoid difficulties such as the following. Let ‘j‘(x)be'(_ 1y) (y
# x). Then (Vx)f{x) becomes (Vx) (3y) (y # X) and is true 1; any
domain having two or more membersi, whereas f{y) becomes ( yl). t(_y
5= y) which is always false. Frege avonc!s the need forlsuch aqua dl tl-
cation by introducing a new type of variable (German* as opposed to
italic letters) for quantifiers. _ ]
nalgl:e:gé sorzletin?es claims to use only one rule of mferencc; 8\;192.
modus ponens: from B and B — A, A follows (c.f. Freg;al,1 ( ‘ )
Begriffsschrift § 6 p. 117). In fact, however, he uses three others vtllz
substitution, generalization, and confinement. Frege constantly
makes substitutions in his proofs, but he never fm:mulates precise
rules governing substitution. The rule of generalization,? he states as

follows (op. cit. § 11 p. 132):

«... instead of X (@) we may put (3a)X(a) if @ occurs only in the argument places of
Thexlf;)le of confinement? is given as follows (op. cit. § 11 p. 132):
“It is also obvious that from
A— d(a)
we can derive
A — (Va)d(a)

1 We have used bold face instead of Frege’s Qeman letters.
2 I have changed Frege’s notation as in the axioms.
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if A is an expression in which a does not occur and a stands only in the
argument places of ® (a).” (Frege’s italics)

While Frege in places seems to ignore the rules of inference other
than modus ponens, elsewhere he is more careful. Thus he writes,
(1879) Begriffsschrift § 6 p. 119:

“In logic people enumerate, following Aristotle, a whole series of modes of in-
ference. I use just this one (i.e. modus ponens — D.G.) — at least in all cases where a
new judgement is derived from more than one judgement.” (my italics)
The qualification in italics makes what Frege says here correct —
though he does not fully clarify the matter.

Frege’s first six axioms, together with the rules of modus ponens
and substitution give a complete system for the propositional cal-
culus. However the axioms are not independent. Lukasiewicz show-
ed that the third axiom can be deduced from the first two (c.f.
Lukasiewicz (1934) On the History of the Logic of Propositions pp.
86-7, where the formal derivation is given). A simple and attractive
axiom scheme for the propositional calculus can be obtained by
retaining Frege’s first two axioms (Formulas (1) and (2)), and
replacing his next four axioms (Formulas (8), (28), (31), and (41) ) by
a single axiom viz.

(ta—b)—( (—wa—-b)—a)
which can be thought of as expressing a form of reductio ad ab-
surdum. If we take modus ponens as arule of inference, and regard the
axioms as axiom-schemas (or alternatively add a rule of sub-
stitution), the resulting system is consistent and complete. (For
details see Bell and Machover (1977) Ch. 1 § 10 f)

Frege intended his system as a higher-order logic, that is, he
allowed quantification over predicates, and in fact does quantify
over predicates in several formulas of the Begriffsschrift (e.g. For-
mula (76)). However an appropriate fragment of his system can be
interpreted as a system of 1st-order predicate calculus with identity,
and, if so interpreted, is complete. Thus, if we put aside the question
of notation, it must be said that modern syntactic presentations of the
propositional and predicate calculus are very little superior to
Frege’s Begriffsschrift treatment.

The most noted 19th century work on formal logic before Frege

was of course Boole’s (1847) The Mathematical Analysis of Logic.

Between 1847 and 1879 most researchers interested in formal logic
worked on extending and improving Boole’s system. Frege’s work,
however, contained many remarkable innovations and improve- -
ments vis-a-vis this Boolean tradition. His axiomatic-deductive
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presentation of the propositional calculus (with axioms and rulef g;“
inference clearly distinguished), anq his complete developqxlenThe
predicate calculus and quantification theory are all nc;:ret.ik.
question naturally arises: what enabled Frege to make such striking
vances?!
ade;;l: key difference between the systems ‘of l?.oole and Fregehcatn
best be understood if we take account of t_hen‘ different approachs ci
logic and different motivations for sl\_]@ymg the subject. Let us ;tarh
with Boole. He belonged to the British school. of algebra \iv 1cd
flourished in the 19th century. The members of thxs school deve opet
new algebraic techniques and systems, and applied Ehese toa yaneo);
of problems in mathematics and physics. Boole’s f‘n.'st piec]e of
mathematical research his 1844 ‘A Qeneral Meth_od in f?m} yssmr
applies this kind of approach to analysis bylde_velopmg aca cuf u[h(,;[
operators. His next idea was to deal with logicin the same waiy e
is to say to reduce the methods of traditional logic to an a Age i
calculus. The title of Boole’s 1847 work: ‘The Mathemgucal nalysis
of Logic, being an essay towards a calculus of deductive rf%;lspr::fl;%k,
clearly indicates Boole’s programme. In the first F:hapterhc? t 115 iRy
‘First Principles’, Boole sets out the basic operations of }115 a gemum
calculus. He begins each of the next four f:hapters, which cons L
the bulk of the monograph, by summarizing some of the basic do -
trines of traditional logic. He then goes on to show how the;e 1?;
trines can be expressed using his _a_lgebralc _calculus. Tl?us} I(;t: 3
programme is really to reduce traditional logic to algebraic for e
and manipulations. Of course his new notation and a[:t»)prtozahcere :
suggest extensions of traditional logic at various pomls,t : ultera[ion
nothing in the programme lillqely to bring about a dramatic a
i content of traditional logic. ' | ,
" L}z us next contrast Boole’s programme with Fx."ege s. 'Fregel 5
principal aim was to establish his logicist view that an.thmettl‘c cc;uan
be reduced to logic. To this end he had to develop arithmetic adEd
axiomatic-deductive system, and to show that all the axioms ncl:e .
were truths of logic. He had moreover to make all the ru eslhat
inference used in the proofs fully explicit in order to_make §ure_t'
no inferences were used which depended on some kind of 1;1@1 11?11;
rather than on pure logic. These aims Frege states very clearly in
Preface to the Begriffsschrift (p. 104):
! On this question of the relationship between Boole and Frege, I have greatly ben-

i i to be
efited from long conversations with Dr. M: L. G. Redhead. Indeed the views to
expressed on this matter are largely due to him.
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“Now, while considering the question to which of these two kinds [of truths] do
Judgements of arithmetic belong, 1 had first to test how far one could get in
arithmetic by means of logical deductions alone, supported only by the laws of
thought, which transcend all particulars. The procedure in this effort was this: |
sought first to reduce the concept of ordering-in-a-sequence to the notion of logical
ordering, in order to advance from here to the concept of number. So that some-
thing intuitive could not squeeze in unnoticed here, it was most important to keep
the chain of reasoning free of gaps. As I endeavoured to fulfil this requirement
most rigorously, I found an obstacle in the inadequacy of the language; despite all
the unwieldiness of the expressions, the more complex the relations became, the
less precision — which my purpose required — could be obtained. From this
deficiency arose the idea of the “conceptual notation™ presented here. Thus, its
chief purpose should be to test in the most reliable manner the validity of a chain of

reasoning and expose each presupposition which tends to creep in unnoticed, so
that its source can be investigated.”

The difference between Frege’s programme and Boole’s also shows
up in the differences between their respective monographs. Frege,
unlike Boole, hardly considers traditional logic (except in passing).
Having set up the propositional and predicate calculi in Chs. I and 1,
Frege proceeds in Ch. III to ‘Some topics from a general theory of
sequences’. This investigation, as we have seen, forms part of his
attempt to reduce mathematical induction (or the inference from » to
n + 1) to purely logical inference.

Thus whereas Boole wanted to express traditional logic more per-
spicuously using the techniques of algebra, Frege wanted to distill
out the logic needed to develop arithmetic deductively. Frege states
that in his system: “calculation becomes deduction” ( (1884)

. Foundations of Arithmetic § 87, p. 99¢), while Boole aimed to pro-

duce: “a calculus of deductive reasoning” (part of the subtitle of his
(1847) The Mathematical Analysis of Logic) i.e. to reduce deduction
to calculation. We could put the difference aphoristically as follows.!
Boole tried to reduce logic to arithmetic, and Frege to reduce
arithmetic to logic. The meaning here is that Boole wanted to reduce
deductive logic to an algebraic calculus similar to the algebraic cal-
culus abstracted from the usual arithmetical operations. In this sense
he aimed to reduce logic to arithmetic.

We have next to show why Frege’s programme produced greater
innovations in Logic than Boole’s. The point is really quite a simple

-one. Frege had to make fully explicit all the logical principles needed

in a deductive development of arithmetic, and in fact many of these
go beyond anything which had been recognized in traditional logic.
On the other hand, there was, as we have already argued, little reason

! This formulation is due to Dr. M. L. G. Redhead.
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why Boole’s programme should lead to striking changes in the con-
tent of traditional logic. . ' R ,
We can amplify this by looking at the innovations of Frege’s
mentioned earlier. First of all an axiomatic-deductive presentation of
logic would clearly be needed for Frege’s programme — t!lough not
for Boole’s. Secondly an adequate treatment of quantification theory
‘is necessary for formalizing arithmetic. Consider the simple state-
ment, mentioned earlier, that there is a prime number greater than
any given number. If we write: ‘m is a prime number’ as Pr (m), this
becomes ( )
n)(3m)(Pr(m) a (m>n)). .
Howgez(herz(we(hzve the nested quantifiers (Vn)(@m), and thlS. goes
beyond anything to be found in traditional logic. Then agamdto
express the principle of mathematical induction in its first-order
o P(n)—> Pln+ 1) = (Vm)P() '

P(0) A (Vn)(P(n) — P(n - ‘ o
we hgviot)o ha(we )tgle(nltion of the scope of a quantifier. This notion 1s
in fact introduced by Frege in (1879) Begriffsschrift § 1lp. 131, and is
used in his definition of ‘the property F is.heredltary in the’ -
sequence’. If we write ‘y is a successor of x in the q:-seque.nce as
‘p(x,y), then Frege’s definition in modern notation becomes:

(V)(FC) = (D)%) > FOY) o
(c.f. (1879) Begriffsschrift § 24 pp. 167-170). This dei.'imt%on plays an
essential part in Frege’s attempt to reduce mathematical induction to
logical inference, as we remarked earhqr. . s ad

So Frege’s logicist programme prowdec.l the sgmulus for his ad-
vances in formal logic, but, if the matter 1s opnmdered carefully, it
will I think be seen that only a part of this programme would have
been sufficient by itself to provide the necessary stimulus. The crucial
thing is the plan to develop arithmetic as a formal ‘axxon‘lauc-dedug-
tive system, i.e. as an axiomatic-deductive system 1n which the unb-
erlying logic is made fully explicit. This view \Yﬂl, I l?ellevg, he
supported by a consideration of Peano’s work on logic and the
foundations of arithmetic.

As we have seen, in his Arithmetices principia nova {nethodo ex-
posita of 1889, Peano tries to give a formal anomatlc-de'ductlve
development of arithmetic. However Peano, 1.1nl1ke Fr.ege, is not a
logicist. He believes that arithmetic contains certain primitive
notions which cannot be reduced to logical notions; and also
depends on certain arithmetical axioms which cannot be derived
from logical axioms.

76

It is indicative of Frege’s failure to gain recognition that Peano
writing 10 years after the Begriffsschrift does not refer to Frege at all,
and almost certainly had not heard of him. If our general thesis is
correct, Peano’s project for the foundations of arithmetic should
have stimulated him, like Frege before him, to make advances in
logic. This turns out to be the case, except that, whereas Frege
developed quantification theory in a complete form which has
hardly been improved on since, Peano’s work was much more
scrappy and stood in need of a great deal of development and
improvement. Still Peano was forced by the requirements of his
programme for arithmetic to find some means of expressing what is
now expressed using the universal and existential quantifiers. Let us
next examine what he did.

The first relevant passage is the following, (1889) Arithmetices
principia nova methodo exposita p. 105:

“If the propositions a, b contain the indeterminate quantities x, y, ..., that is,
express conditions on these-objects, thena D, , b means: whatever the x, y, ...,
from proposition a one deduces b. If indeed there is no danger of ambiguity,
instead of O, , we write only D.”

This device enables Peano to express propositions like (Vx)(A(x) —
B(x)), (Vx)(Vy)(A(x, y) = B(x, )), ... . However he cannot use it to

. express propositions like (Vx)A(x), (Ax)(A(x)— B(x)), or

(Vx)(3»)A(x, y). To increase the expressive power of his symbolism,
Peano has to make use of his notation for classes. Peano regarded
‘class’ as a logical notion, and developed a calculus of classes as part
of his logic. In particular he writes (op. cit. p. 108):

“Let a be a proposition containing the indeterminate x; then the expression [xe] a,
which is read those x such that a, or solutions, or roots of the condition g, indicates
the class consisting of individuals which satisfy the condition a.”

Note that here Peano implicitly assumes the so-called axiom of

comprehension i.e. (Ay)(Vx)(x € y « P (x)) which leads to Russell’s
paradox (see Ch. 12) below .

Using this device of class abstraction, Peano can express existential
quantification. For example (3x)a(x), he could write as [xe).a: -= A,
where A is the null class, and *-=’ means ‘is not equal to’. Indeed
Peano has to make use of this device in order to express some of the

_ theorems in his subsequent development of arithmetic. For example,

his § 8 Theorem 12 (op. cit. p. 126) would be written using the
standard quantifiers as:

(VP.9)(p, g ¢ N. D@m)(mP/ g & N).
Peano writes it as:

PqeN.D i[mel:meN.mP/geN..-= A.
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We cannot leave the subject of Frege’s innovations in formal logic
without briefly inquiring why they failed to gain recognition from
Frege’s contemporaries. It might be thought that Frege’s work was
too formal and technical in character, and was therefore left unread.
This, however, cannot be the whole answer, for Peano’s work was
equally formal and technical, and yet gained instant recognition (and
even popularity). Moreover Bynum in his recent (1972) translation of
the Begriffsschrift has conveniently collected the six contemporary
reviews of the Begriffsschrift, translated into English where
necessary, into Appendix 1. These reviews show that Frege’s work
was read by some of the leading logicians of the time. The trouble
was that they failed to appreciate Frege’s innovations. Thus Venn
writes in his review in Mind (1880) (p. 234 of Bynum’s (1972) edition
of the Begriffsschrift):

«... it does not seem to me that Dr. Frege’s scheme can for a moment compare with

that of Boole. I should suppose, from his making no reference whatever to the

latter,that he has not seen it, nor any of the modifications of it with which we are

familiar here. Certainly the merits which he claims as novel for his own method are
common to every symbolic method.”

In effect Venn has completely failed to see Frege's advance over
Boole, though he may be right about one thing, namely that Frege
had not read Boole before composing the Begriffsschrift.

Of course Frege is not the first thinker (and without doubt will not
be the last) whose innovations are not understood by contemporaries
familiar with older ways of thought. However, there is one particular
factor which may have rendered his work difficult for his con-
temporaries, and that is his peculiar two-dimensional notation. Cer-
tainly the most detailed review of Frege (that by Schroder) singles
this feature out for (often quite justified) criticism, and Frege’s two-
dimensional script is the one part of his logic which has never been
accepted. We will now briefly explain Frege’s notation, and the
objections which can be raised to it.

Frege writes the content of a proposition A as

—A
If the proposition is asserted, he writes
—aA

where the small vertical line is his assertion sign. He bases his treat-
ment of the propositional calculus on two connectives, material
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implication and negation (in our notation — —). = A he writes
— 1A, which is quite unobjectionable. However A — B, he

writes
—E B
A

’I"hjS procedure gives Frege’s Begriffsschrift 1ts peculiar two aimen-
sional character. The notation does allow us to dispense with
brackets. Thus A — (B — C) is written ’

C
=R
A

while (A — B) — C is written

g

I

A

Frege’s second axiom for the propositional calculus, which, in our
notation, is

. (C—-)(b-—?a))—>((c-—>b)—>(c—>a))

is written by him, (1879) Begriffsschrift § 15 p. 140:

a

c

Th1§ gives a vxyid illustration of how Frege’s notation converts a
horizontal row into a vertical column

Schroder comments as follows on this notation of F rege’s, (1880)

Review of Begriffsschrift p. 229:
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“In fact, the author’s formula language not only indulges in the Japanese practicfe
of writing vertically, but also restricts him to only one row per page, or al most, if
we count the column added as explanation, two rows! This monstrous waste of
space which, from a typographical point of view (as is evident here), is iftherent in

the Fregean “conceptual notation”, should definitely decide the issue in favour of -

the Boolean school — if, indeed, there is still a question of choice.”
Those accustomed to reading European languages do indeed find it
easier to follow a script written in rows from left to right. In English,
for example, the conditional is written:

If A, then B
so that the symbolic
A—B
which bears an obvious analogy is easy to understand. Frege’s
—T1—8B
—A

is correspondingly difficult to grasp. Of course it may be that Frege’s
notation is easier for those accustomed to read Chinese or Japanse —
but this is something on which I cannot comment. o

Schroder is also right when he says that Frege’s notation 1s a
“waste of space”, as the reader may easily see by companng Frege’s
second axiom written in his own notation, with the same axiom
written in the more usual notation (see above p.79). However
Schroder is guilty of a non-sequitur when he says that this waste of
space (op. cit. p. 229):

«. should definitely decide the issue in favour of the Boolean school...”
At most the waste of space shows that Frege has a bad notation for
the material conditional — not that his system as a whole is inferior to
Boole’s. However this non-sequitur may have been at least partly
responsible for the poor reception of the Begriffsschrift.

Another disadvantage of Frege’s notation is that it does not allow
us to introduce abbreviations for the other connectives. Suppose, for
example, we give an axiomatic-deductive development of the pro-
positional calculus, introducing —, — as the primitive connectives.
We do not, of course, have to introduce any further connectives,
since —, — by themselves suffice to express any compound pro-
position of the calculus. However it is nonetheless very convenient
for clarity and conciseness to introduce the other connectives as
abbreviations e.g.

AvB = def_‘A_’ B
AAB =44 (A ——B) etc.
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But .Fr'ege’s. notation does not allow us to introduce such ab-
breviations in any convenient way. Thus all compound propositions
must be written out in the primitive notation. Schréder points out
one particularly striking instance of this (op. cit. p. 227):

“Now, in order to represent for example the disjunctive “or” — namely, to state that
a holds or b holds, but not both — the author has to use the schema

LI B | —4a

——b

L —»b

.Admittedly the disjunf.:tive “or” is not usually employed, but, should
it be needed, we can in the standard treatment easily introduce an

abbreviation (A¥ B is sometimes used for this). However, in Frege’s

notation, the complicated expression just given has to be written out
each time. :

It should be. observed, incidentally, that Schréder had obviously
read the Begriffsschrift carefully. He points out a mistake which

Frege made when he wrote, (1879) Begriffsschrift § 5, p. 117:
“We can see just as easily that

————T
A

—B

denies the case in which B is affirmed, but A and T are denied.” In
fact Frege’s verbal definition corresponds to the formula B — (AvT)
rather than to the one he gives i.e. (in our notation) (B — A) — T..
Schréder remarks in this context (op. cit. p. 225):

“... the author infortunately makes a mistake (p. 7 — however, it is the only one
which I noticed in the whole book)...”

Schr‘o‘dgr does also admit (op. cit. p. 229) that Frege can express
generality better than Boole, but he adds (op. cit. pp. 229-30):

“... one may not perchance find a justification here for his other deviations from

Boo}e’s notation, and the analogous modification or extension can easily be
achieved in Boolean notation as well.” :

It is possible then that if Frege had replaced his two dimensional
notation for material implication by a linear one, his work might
have been more favourably received. However, Frege stuck to his
guns and rejected the views of his critics on this point. In a reply to
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Schroder’s review he wrote, (1882) On the Aim of the Begriffsschrift

~ 9T '

d “The disadvantage of the waste of space of the Begriffsschrift is converted into the
advantage of perspicuity; the advantage of terseness for Boole is transformed into
the disadvantage of unintelligibility. The Begriffsschrift makes the most of the
two-dimensionality of the writing surface by allowing the assertible contents to
follow one below the other while each of these extends [separately] from left to
right. Thus, the separate contents are clearly separated from each other, and yet
their logical relations are easily visible at a glance. For Boole, a single line, often
excessively long, would result.”

Frege’s reply to the Boolean Schroder is interesting because it betrays

at one point a certain lack of confidence. It is true that Frege

definitely claims his treatment of quantification to be an advance on

Boole. Speaking of his notation for the universal quantifier, he says,

(1882) On the Aim of the Begriffsschrift p. 99:

“I consider this mode of notation one of the most important components of my

Begriffsschrift, through which it also has, as a mere presentation of logical forms, a

considerable advantage over Boole’s mode of notation.”

On the other hand, when comparing his Begriffsschrift with the

Leibnizian-Boolean formula language, he writes (op. cit. p. 98):

“We can ask ... whether perhaps my formal language governs a smaller region.”
Was Frege himself at least partially unaware of the superiority of his
logic to that of the Booleans?

Frege did not change his mind about his two-dimensional
notation. In an article of 1896 comparing his system of formal logic
with Peano’s he writes, (1896) Uber die Begriffsschrift des Heern

Peano und meine eigene. p. 222:

‘In Peano’s formal logic the writing of formulas on a single line is, so it seems,
carried through as a fundamental principle which appears to me as a wanton
renunciation of a major advantage of writing over speech. The convenience of the
typesetter is not however the highest Good. For physiological reasons, a long line is
harder to survey and its divisions are harder to grasp than shorter lines lying
underneath each other, and created from the breaking up of the original line,

provided that this partition corresponds to the division of the sense.”
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Chapter 12.
Frege’s Grundgesetze, and Russell’s paradox.

Between the Begriffsschrift of 1879 and the Grundgesetze der
Arithmetik of 1893, Frege made many alterations in, and develop-
ments of, his logical system. One of the most important innovations
was the introduction and elaboration of his (now famous) distinction
between sense (Sinn) and reference or denotation (Bedeutung). Frege
devoted an article, his (1892) “On Sense and Reference”, to discus-
sing this distinction, and incorporated the results in the logic of the
Grundgesetze.

The problem is concerned with equality statements of the form a
= b. If we take equality as a relation between the objects denoted by
a and b, then, if a = b is true, it would seem to express the same
relation asa = a. Yet, Frege objects, a = a is always trivial, whereas
a = b can sometimes contain a valuable extension of our knowledge.
The next suggestion considered by Frege is that @ = b should be
taken to mean: the name ‘¢’ and the name ‘b’ stand for the same
object. But now equality statements would only express linguistic
knowledge about what names we have given to certain objects.
However equality statements can sometimes express knowledge of
other kinds. For example (Frege’s own example), ‘The morning star
= the evening star’ expresses astronomical rather than linguistic
knowledge.

We are thus led to Frege’s final theory. The reference or deno-
tation of ‘the morning star’ and of ‘the evening star’ is the actual
planet Venus. On the other hand the sense of the expression ‘the
morning star’ differs from the sense of the expression ‘the evening
star’, and this is why the proposition ‘the evening star = the morning
star’ can express significant knowledge. Frege sometimes speaks of
the sense of a referring expression as the mode of presentation of the
object. The idea here is presumably that the planet Venus can be
presented either as the star which shines brightly in the early morn-
ing, or as the star which shines brightly in the early evening. In
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general, Frege analyses “a = b” as “the sense of ‘a’ and the sense of %’
have the same reference”. '

It is worth noting the connection between Frege’s logical dis-
tinction between sense and reference, and his metaphysics. Frege
always accepted the existence of a real, external, material world, and
he thought of certain linguistic expressions as being used to refer to
objects in this world. Russell, on the other hand, wanted to reduce
material objects to collections of sense-data, and this was part of the
reason for his rejecting the sense/reference distinction. (c.f. Russell
(1905) On Denoting). '

Another link with Frege’s metaphysics is formed when Frege ex-
tends the sense/reference distinction to mathematics. He analyses
the equality 2 + 2 = 3 + I’ along the same lines as the equality ‘the
morning star = the evening star’. The expressions 2 + 2’and 3 + I’
have different senses, but the same reference viz. the number 4. This
analysis presupposes Frege’s Platonic view that there is a ‘third
world’ of objectively existing abstract entities (e.g. numbers, pro-
positions, etc.) analogous to the ‘first world” of material objects.
Incidentally Frege’s analysis is still acceptable if we replace his
‘traditional Platonism’ by ‘constructive Platonism,’ as suggested in
Ch. 6.

In the mathematical case, Frege gives an interesting example to
illustrate his view of sense as ‘mode of presentation’, (1892) On Sense
and Reference, p. 57:

“Leta, b, ¢, be the lines connecting the vertices of a triangle with the midpoints of
the opposite sides. The point of intersection of @ and b is then the same as the point
of intersection of b and ¢. So we have different designations for the same point, and
these names (‘point of intersection of a and &', ‘point of intersection of b and ¢”)
likewise indicate the mode of presentation; and hence the statement contains
actual knowledge.”

As far as denoting expressions of the form ‘the morning star’, ‘the
even prime’ etc. are concerned, Frege’s distinction between sense and
reference seems to me most valuable, and it does help to clarify the
meaning of equality statements of the form ‘a = b’. However Frege
proceeds to extend the distinction to whole sentences. This extension
appears to me to be of much more questionable value.

Let us take as an example the sentence 2 + 2 = 4.” The sense of
this sentence is, for Frege, the proposition (or thought in the objec-

tive sense) expressed. Such propositions or thoughts are inhabitants

of his third world. So far, the extension seems reasonable, but Frege
next argues that we should consider the truth-value of the pro-
position expressed as the reference of the sentence. Thus the
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reference of 2 + 2 = 4’ would be the truth-value: the True. But this
seems to me metaphorical and strained. Is it really reasonable to
regard 2 + 2 = 4’ as referring to the True, in the same way as ‘the
morning star’ refers to the planet Venus? I would say: no. This view
of truth-values, however, is embodied in the logic of the
Grundgeseize to which we now turn.

In the Begriffsschrift, as we have seen, Frege wrote the content of a
proposition A as

A

and referred to as the content-stroke. Having separated the
content into thought and truth-value, he now uses

A

to denote the truth-value of A, and refers to simply as the
horizontal. Accordingly we have the following explanation, (1893)
Grundgesetze Vol 1§ 5 Furth Translation p. 38:

% A
is the True if A is the True; on the other hand it is the False if A is not
the True.”

One point to note about this exaplanation is that we do not have to
restrict ——A to cases where A expresses a proposition. We can
substitute for A any referring expression, and write the Queen of
England in 1879, or —— 2. Since neither the Queen of England in

1879 nor 2 is the True, both these expressions stand for the False.
Correspondingly, In Frege’s sign for the conditional,

r

A
we do not have to restrict I', A to signs expressing propositions, but
can write e.g. ;

T;he éun

This actually turns out to be true, since —— the Sun and —— 3 both
stand for the False, and it is true that the False materially implies the
False.

This curious approach of Frege’s makes it difficult to translate the
notation of the Grundgesetze accurately into a more modern
notation. If, as in the case of the Begriffsschrift we translate
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as _ *

we are not doing justice to Frege, since e.g. ‘2 — the Sun’ would
normally be regarded as nonsense. Nonetheless it still seems to me
worthwhile, in the interests of claity, to translate Frege’s formulas
into a modern notation. We are thereby restricting the meaning of
Frege’s logic, but, if this is clearly understood, it should cause no
harm, since the reader can always mentally supply the extension
should he wish to do so.

Our procedure then will be to translate Frege’s notation for con-
nectives, quantifiers, extensions of concepts, membership ete. into
the modern notation given in our appendix. As in the previous
chapter, we will retain Frege’s letters for variables, functions etc.
except that we will replace the small Greek ‘e’ wherever it occurs by
0. This is to avoid confusion with the membership symbol. In several
further cases (e.g. the notion of extension of a concept), this trans-
lation will involve a restriction of Frege’s original meaning, and we
will draw attention to some such restrictions as we go along.

We have objected to the view that a proposition refers to its
truth-value. Still the notion of truth-value (which Frege was the first
to introduce) is a most valuable one. In his (1879) Begriffsschrift, § 5,
Bynum translation pp. 114-5, Frege explained the meaning of his

conditional stroke as follows:
“If A and B stand for assertible contents (§ 2), there are the following four
possibilities:
(1) Aisaffirmed and B is affirmed
(2) Aisaffirmed and B is denied
(3) Aisdenied and B is affirmed
(4) Aisdenied and B is denied.
Now, ) A

B
stands for the judgement that the third of these possibilities does not occur, but one of
the other three does.”

This explanation in terms of affirming and denying contains a whiff

of psychologism. It is therefore a considerable improvement from"

Frege’s point-of-view to replace it by an explanation in terms of
truth-values. This Frege does in his (1893) Grundgesetze, § 12, Furth
translation p. 51, as follows:
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“... lintroduce the function of two arguments
T
{
by stipulating that its value shall be the False if the True be taken as £-argument

and any object other than the True be taken as {-argument, and that in all other
cases the value of the function shall be the True.”

Frege formulates the propositional and predicate calculi in a dif-
ferent way in the Grundgesetze from the one he gives in the
Begriffsschrift. The essential difference is that in the Grundgesetze he
has fewer axioms and more rules of inference. The reson for this
change is that it enables Frege to shorten some of the formal proofs.
As Frege himself says, (1893) Grundgesetze, Vol. 1, § 14, Furth
translation p. 57:
“This (i.e. Modus ponens - D.G.)is the sole method of inference used in my book
Begriffsschrift, and one can actually manage with it alone. The dictates of scientific
economy would properly require that we do so; yet in this book, where I wish to set
up lengthy chains of inference, I must make some concessions to practical con-
siderations. In fact, if I were not willing to admit some additional methods of

inference the result would be exorbitant lengthiness — a point already anticipated
in the Foreword to Begriffsschrift.”

We will not expound Frege’s new version of the propositional and
predicate calculi, since the changes from the Begriffsschrift are
motivated by practical considerations concerned with the ease of
technical manipulation. We will concentrate rather on those parts of
the logic of the Grundgesetze where Frege introduces new principles
having some theoretical importance. One such theoretical change is
that the logic of the Grundgesetze is more explicitly a higher-order
logic. This is not something wholly new, since the Begriffsschrift was
always intended to be a higher-order logic, and indeed, as we have
seen, Frege does quantify over predicates in the Begriffsschrift. Still,
the whole matter is made more precise and explicit in the
Grundgeseize.

The Basic Law (Axiom) Ila of the Grundgesetze is

(Va)fta) - fia)

which is the same as the Begriffsschrift’s Axiom of the Universal
Quantifier. However, in the Grundgesetze, Frege explicitly extends
this to deal with the case of quantifying over functions. To do so, he
has to clarify somewhat the notion of function.

Frege assumes a domain of objects which includes both material
objects, and abstract objects. He gives the following explanation,
(1893) Grundgesetze, § 21, Furth translation, p- 74:

“We now call those functions whose arguments are objects first-level functions; on
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the other hand, those functions whose arguments are first-level functions may be
called second-level functions.” _
A first-level function of one argument is called an argument of type
2' a
Frege’s next step is to introduce a notation for second-level func-
tions, (1893) Grundgesetze, § 25, Furth translation, pp. 79-80:

“We indicate a second-level function of one argument of type 2 in this way:

“My(a(B))"
by using the Roman function-letter “M”, as we indicate a first-level function of one
argument by “f(€)”. “¢ ()" here renders recognizable the argument-place, just as
“£"” does in “f{£)". The letter “B” here in the brackets fills up the place of the
argument of the function occurring as argument [of the whole].”

Using this notation, Frege states his basic law IIb as follows:
(VI)M(f(B)) — Mg(f(B))

This, of course, is precisely analogous to Ila, except that the

quantification is over first-level functions of one argument rather

than over objects.

Frege also gives a higher-order treatment of equality (or identity).
The axioms of identity given in the Begriffsschrift are replaced by the
Grundgesetze’s basic law I11:

g(a = b)— g((VO)(f(b) — f(a))) -
If ‘g(...)" is replaced successively by ... is true’ and °... is false’, the two
Begriffsschrift axioms of identity viz.

(a = b)—>(fla) > b))

a=a
are easily derived. Frege carries out the derivations in (1893)
Grundgesetze, Vol. 1, § 50, Furth translation. pp. 111-113.

So far then Frege has either reformulated parts of the Begrif-
fsschrift (in his treatment of the propositional and predicate calculi),
or made more explicit what was implicit (in his treatment of higher-
order quantification). Next, however, he introduces something which
is quite novel vis-g-vis the Begriffsschrift and which was to lead to
contradiction. This is his formal treatment of the extensions of con-
cepts. In his (1884) Foundations of Arithmetic, Frege had defined
numbers as extensions of concepts. His logicist programme therefore
required him to add to his logic a section dealing with extensions of
concepts.

Consider a concept @ (...), Frege writes the extension of the con-
cept, @ (...), or the set of all 8 which satisfy @ (...), as 8®(8). This is
quite similar to the now more usual 6®(8) which we shall use to
translate his notation. However, as in the case of the conditional,
Frege uses 00(0) in an extended sense. He allows one to substitute for
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@ (...) not just a concept, but any function of one argument, so that
one can speak e.g. of 8(6%-0). Indeed he speaks of 0®(8) as the
course-of-values of the function @ (...). Frege in the Grundgesetze
regards a concept as a function whose possible values are the True
and the False. Thus the extension of a concept is a special case of the
course-of-values of a function. When we translate Frege’s 0®(0) as
8®(0), it should be remembered that we are once again somewhat
restricting Frege’s meaning.
Frege introduces his basic law V to deal with the extensions of
concepts. It is:
(08) = ag(e) ) > (Va)(fla) < g(a) )

This was the law which led to contradiction, and it is interesting to
note that even before the discovery of the contradiction, Frege ex-
pressed some doubts about his basic law V. In the introduction to the
(1893) Grundgeseize, he writes (Furth Translation pp. 3-4):

“Ifanyone should find anything defective, he must be able to state precisely where,

according to him, the error lies: in the Basic Laws, in the Definitions, in the Rules,

orin the application of the Rules at a definite point. If we find everything in order,

then we have accurate knowledge of the grounds upon which each individual

theorem is based. A dispute can arise, so far as I can see, only with regard to my

Basic Law concerning courses-of-values (V), which logicians perhaps have not yet

expressly enunciated, and yet is what people have in mind, for example, where

they speak of the extensions of concepts. I hold that it is a law of pure logic. In any

event the place is pointed out where the decision must be made.”
Frege also introduces a sign which serves as a substitute for the
definite article of everyday language. Using the more modern
symbol10®(6) (i.. the B such that ®(8) ), his explanation is as follows.
If @ (...) is a concept under which one and only one object A falls,
then 1@(8) = A. Otherwise 10®(0) = 00(0). Actually Frege’s own
explanation is again more general, though we will not go into details.

In his (1905) article “On Denoting”, Russell points out a number

of consequences of this account of Frege’s. Since there is no King of
France, the phrase ’the King of France’ would, for Frege, denote the
null class. Again take ‘D(£)’ to mean ‘¢ is a son of Mr. So-and-so’. If
Mr. So-and-so has more than one son, then ‘the only son of Mr.
So-and-s0’ = “10®(0)’ would, for Frege, denote the set of sons of Mr.
So-and-so. Russell regards these consequences of Frege’s theory as
“plainly artificial’ and unsatisfactory. As he says, (1905) On Denot-
ing p. 47:

“... Frege ... provides by definition some purely conventional denotation for the

cases in which otherwise there would be none Thus ‘The King of France', is to

denote the null-class; ‘the only son of Mr. So-and-so’ (who has a fine family of ten),
is to denote the class of all his sons; and so on. But this procedure, though it may
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not lead to actual logical error, is plainly artificial, and does not give an exact
analysis of the matter.” _ ‘

Frege's conventional denotations are indeed somewhat artificial, but
then to talk at all of the King of France or of the gnly sqn of Mr.
So-and-so (who has a fine family of ten), is rather curious. It could be
argued that ordinary language does not give any clear sense to these
strange locutions, so that any prescriptions in sucp cases would of
necessity be artificial; and that Frege’s prescriptions are cl:on-
sequently no more artificial than alternative sugg’estlops. Russell of
course wants to replace Frege’s account of 10@(0)" by his own theory
of descriptions — thought his is not something which we will consider
here. -

Frege’s basic law VI deals with10®(0). It 1s

a =10(a = ) ¥ gl

Frege has now sufficient logical apparatus at his disposal to
translate his definition of number (as given in his (1884) Foundatlgns
of Arithmetic) into symbols, and to prove the correspond;lng
theorems. This of course he proceeds to do. Ho._e deals first with
many-one relations and one-one relations; next gives his deﬁrfltlon
of number in general, and of the particular pumbers 0 and 1; and
then goes on to define: “n follows in the series of natural numbers
directly after m”. ) _ '

When discussing Frege’s (1884) Foundations of Arithmetic, we

listed three propositions which Frege states and whose proofs he

there sketches informally. These propositions were (c.f. Ch. 7 p. 47):

(1) “mis a successor of n” is a 1-1 relation.

(2) Every number except 0 is a successor of a number.

(3) Every number has a successor. ‘ i
These propositions are proved formally in Fhe_ Grupdgesetze. (1) is
Theorem 90; (2) is Theorem 107; while (3) is implied by Theorem
155. ‘

In Vol. 1 of the Grundgesetze (1893), Frege takes his formal
development of arithmetic as far as Theorem 348. In Vf)l 11 (1903), he
continues as far as Theorem 484. He then breaks off his treatment of
natural numbers in order to consider real numbers apd' how tk}ey
should be defined. This section of the Grundgesetze 1s interesting
because, among other things, it contains extended criticisms of for-

malist conceptions of mathematics. However we will not here

consider it in detail. " _
It must have seemed to Frege, as he was finishing off Vol. IT of his
Grundgesetzé in the summer of 1902, that he had successfully
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completed the project on which he had worked for nearly all his
academic life. It was true that he had not, as he admitted in the
Introduction to the Grundgesetze (see above Ch. 8 p. ...), carried the
derivation of arithmetic as far as Dedekind had done in Was sind und
was sollen die Zahlen? But Dedekind’s work had been informal in
character, whereas Frege had made the logic he used fully explicit
and formalized all the proofs. Moreover it must have seemed to
Frege that, to get as far as Dedekind, it was only a matter of con-
tinuing the deductions along the lines that he had already amply
indicated. It was just at this moment of apparent success for Frege
that disaster struck in the shape of Russell’s paradox.

Russell discovered his paradox in 1901, and wrote to Frege about it
in a letter dated 16 June 1902. Frege replied on 22 June 1902. Here
are a few extracts from his letter. Frege (1902) Letter to Russell pp.
127-8:

“Your discovery of the contradiction caused me the greatest surprise and, | would
almost say, consternation, since it has shaken the basis on which I intended to build
arithmetic, It seems, then, ... that my Rule V ... is false ... . I must reflect further on
the matter. It is all the more serious since, with the loss of my Rule V, not only the
foundations of my arithmetic, but also the sole possible foundations of arithmetic,
seem to vanish. ... In any case your discovery is very remarkable and will perhaps
result in a great advance in logic, unwelcome as it may seem at first glance.”

Russell’s paradox is most easily derived from the so-called axiom of
comprehension.

@(Vx)(x ey & P(x) ) - (%) :
We have only to substitute x g x (x is not a member of itself) for P(x)
to get:

@AN(Vx)(x ey < x ¢ x) ;
Setting B (for Bertie) in place of y, we have

(Vx)(xeB e xgx)
and so

B e B <« By¢B. A contradiction.

To derive Russell's paradox in Frege’s system, we have only to
show how the axiom of comprehension follows from Frege’s Basic
Law V. In fact Frege proves a version of the axiom of comprehension
as theorem | of the Grundgesetze. This is

fla) & a e bfip) — (**)
Setting a ¢ a for fla) in (**), Russell’s paradox follows as before. We
have thus only to show how (**) follows from Frege’s Basic Law V.
The full formal derivation is given in Furth’s translation of the

Grundgesetze pp. 123-126. We will here sketch informally the basic
ideas of the proof.
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* Suppose first that a e 8f(0). Then, by Frege’s definition of the
membership relation, it follows that there is a function g.such that
g(a) and &g(a) = 0/(0). But Frege’s Basic Law V states that
Of10) = &g(e) ) = (Va)(fla) < g(a) ) .
So we have
(Va)(f(a) < g(a) )
and therefore in particular
fla) < gla)
Since g(a) holds, so does f(a). : s
We have thus shown that a e §/{0) — fla). Conversely, if f{a) holds,
then there is a function g such that g(a) and ég(a) = 6f(8) — namely f
itze]f. Therefore, by Frege’s definition of the membership relation, a
e Of(0).
The news of Russell’s paradox reached Frege too late for him to
change the second volume of the Grundgesetze. However, he did add
an appendix which states and discusses the contradiction. Here he

writes (Furth translation. p. 127):
“Hardly anything more unwelcome can befall a scientific writer than that one of
the foundations of his edifice be shaken after the work is finished.

I have been placed in this position by a letter of Mr. Bertrand Russell just as the
printing of this [second] volume was nearing completion. It is a matter of my Basic
Law (V)....

“Solatium miseris, socios habuisse malorum. (It is solace to the wretched, to have
had companions in their misfortunes — D.G.) I too have this solace, if solace it is;
for everyone who in his proofs has made use of extensions of concepts, classes,
sets,! is in the same position. It is not just a matter of my particular method of
laying the foundations, but of whether a logical foundation for arithmetic is
possible at all.”

Frege is quite correct to mention Dedekind in this connection since
Dedekind, as we have seen (Ch. 8 p. 58), gives a more-or-less explicit
formulation of the axiom of comprehension. Frege could also have
mentioned Peano who presupposes the axiom of comprehension in
his development of logic (c.f. Ch. 11 p. 77).

Frege goes on in the appendix to suggest a method by which
Russell’s contradiction might be resolved. His solution does not in
fact work. Indeed new contradictions can be derived even when
Frege’s basic law V is emended in the way he suggests. This was
apparently first shown by Le$niewski in 1938. A full account of
Frege’s proposed solution, and the new contradictions to which it
leads is contained in the articles: W. V. Quine (1955) On Frege’s Way
Out, and P. T. Geach (1956) On Frege’s Way Out.

! Herr R. Dedekind’s ‘systems’ also come under this head. (Frege's footnote).
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We ourselves will not, however analyse Frege’s suggested solution,
but rather stop at this point. The discovery of the contradictions
marks a natural watershed in the study of the foundations of
mathematics. The paradoxes raised new problems, and an analysis of

the attempts to solve these problems lies beyond the limits of the
present work.
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Appendix L.
On Notation

In the text I have tried to use a fairly standard modern notation when
writing formulas involving mathematical logic and set theory —
except in quoting from older writers when I have sometimes retained
the original notation. The aim of this appendix is to explain the
modern notation employed.

1. Propositional Calculus

This deals with compound propositions formed out of simpler pro-
positions by means of connectives. We shall use the following
notation for connectives: - = not,v = or, A = and, « = if ... then,
< = if and only if. We shall deal only with standard logic, and so it
will be assumed that any proposition is either true or false, but not
both (2-valuedness assumption). Granted this assumption, we can
define the connectives in terms of ‘true’ and “false’ as follows (where
p. q stand for arbitrary propositions)

— pis true if and only if p is false
p Vv qis false if and only if p is false and q is false
p A qis true if and only if p is true and q is true
p— q s false if and only if p is true and q is false
p < q is true if and only if p and q are either both true, or both false

2. Predicate Calculus

In the predicate calculus there are variables written e.g. x, , z, ..., X,
Xgy sy Xpy .. Which are presumed to range over a domain of objects
e.g. human beings, physical things, natural numbers, etc.

There are also a number of predicates:
I-place predicates P(x) e.g. x is a man
2-place predicates (or relations) R(x, y) e.g. x is to the left of y
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n-place predicates P(xy, x,, ... ,Xp) €8 X; < X, < X3 < ... <X,
There are in addition quantifiers:
{(Vx)P(x)’ means ‘for all x, P(x) holds’
(3x)P(x)’ means ‘there is an x, for which P(x) holds’
Since we are still making the assumption of 2-valuedness, either of
these can be defined in terms of the other e.g.
(@AX)P(x) = ger (3x)P(x)
or  (VX)P(x) = ger~(Vx)P(x)

If quantification is restricted to the variables x, y, z, ..., we speak of
Ist-order predicate calculus. If quantification over the predicates is
also allowed e.g. (VP)(Vx)(P(x) — P(x) ), we speak of higher-order
predicate calculus.

We shall use “xP(x)’ to mean ‘the x such that P(x).

3. Set Theory

Let A be a ser. ‘a is a member of A’, we shall write as ‘a e A’. Let P(x)
be a predicate. Because of Russell’s paradox (see Ch. 12 p. 91) we
cannot automatically assume that the set of all x’s such that P(x)
exists, but, if it does exist, we shall denote it by £P(x). We shall use the
following notation for set-theoretic operations: C = subset, U =
union, N = intersection. These may be defined as follows:

A C Bifand only if (Vx)( (xe A)— (xeB) )

AUB = 4%((xeA)v(xeB))

ANB = gri((xeA)a(xeB))
The set which has no members is called the empty or null set. We shall
denote it by @. It may be defined thus: 8 = £(x # x).
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Appendix IL
On the Principle of Mathematical,
or Complete, Induction. .

This principle states that if («) a property P holds for 0, and (B)
whenever the property holds for a natural number », then it holds
also for n + 1, then the property holds for all natural numbers. In
symbols:

(P(0) A (Vn)(P(n) — P(n + 1)) )— (Vn)P(n)

If we take the natural numbers as beginning with 1 rather than 0, we
merely substitute 1 for 0 in the above formulation.

The statement of the principle of mathematical, or complete, in-
duction just given is in terms of properties or predicates; but we can
also state the principle in terms of sets. Taking the natural numbers
as beginning with 1, it becomes the following. Given any set S, if (a) 1
e S, and (B) whenever a natural numbern ¢ S, thenn + 18§, then all
natural numbers are in S. In symbols:

((1eS)a(Vn)(neS)—(n+ 1&8)) )— (Vn)(neS)
Suppose N = the set of natural numbers

={1,28, . ;05

Then we can write (Vn)(neS)as N C S.

The principle of mathematical, or complete, induction is used
constantly in mathematical developments of number theory. We
shall illustrate thus by stating a very simple theorem, and proving it
using mathematical induction.

Theorem1 + 2+ 3+ ..+ n=n(n+1)
2

Proof (¢) The theorem holds for n = 1, for,in thiscase 1 + 2 + 3 +
e+ n=1
andn(n+1)=12=1

2 2

So the two sides of the equation are equal.
(B) Suppose the theorem holds fornie. 1 +2 4+ 3 + ... + n

=n(+1)
2
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Then
1+2+3. . 4+n+(n+D)=nmr+1)+n+1
2

= (n+ ) +2)
2

So if the theorem holds for n, it also holds for n + 1. Thus, by the
principle of mathematical, or complete, induction, the theorem holds
for all natural numbers ».
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